The plasma proteome and breast cancer risk | Breast Cancer Research

  • Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and Trends—An update. Cancer Epidemiol Biomarkers Prev. 2016;25(1):16–27.

    PubMed 

    Google Scholar 

  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Cancer J Clin. 2023;73(1):17–48.

  • Heer E, Harper A, Escandor N, Sung H, McCormack V, Fidler-Benaoudia MM. Global burden and trends in premenopausal and postmenopausal breast cancer: a population-based study. Lancet Global Health. 2020;8(8):e1027–37.

    PubMed 

    Google Scholar 

  • Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global cancer in women: burden and trends. Cancer Epidemiol Biomarkers Prev. 2017;26(4):444–57.

    PubMed 

    Google Scholar 

  • Kehm RD, Yang W, Tehranifar P, Terry MB. 40 years of change in Age- and Stage-Specific cancer incidence rates in US women and men. JNCI Cancer Spectr 2019;3(3).

  • Emilsson V, Ilkov M, Lamb JR, et al. Co-regulatory networks of human serum proteins link genetics to disease. Science. 2018;361(6404):769–73.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwenk JM, Omenn GS, Sun Z, et al. The human plasma proteome draft of 2017: Building on the human plasma PeptideAtlas from mass spectrometry and complementary assays. J Proteome Res. 2017;16(12):4299–310.

    PubMed 
    PubMed Central 

    Google Scholar 

  • International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Google Scholar 

  • Lin H, Lee E, Hestir K, et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science. 2008;320(5877):807–11.

    PubMed 

    Google Scholar 

  • Williams SA, Kivimaki M, Langenberg C, et al. Plasma protein patterns as comprehensive indicators of health. Nat Med. 2019;25(12):1851–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Key TJ, Appleby PN, Reeves GK, Roddam AW. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010;11(6):530–42.

    PubMed 

    Google Scholar 

  • Mälarstig A, Grassmann F, Dahl L, et al. Evaluation of Circulating plasma proteins in breast cancer using Mendelian randomisation. Nat Commun. 2023;14(1):7680.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shu X, Bao J, Wu L, et al. Evaluation of associations between genetically predicted Circulating protein biomarkers and breast cancer risk. Int J Cancer. 2020;146(8):2130–8.

    PubMed 

    Google Scholar 

  • Song J, Yang H. Identifying new biomarkers and potential therapeutic targets for breast cancer through the integration of human plasma proteomics: a Mendelian randomization study and colocalization analysis. Front Endocrinol (Lausanne). 2024;15:1449668.

    PubMed 

    Google Scholar 

  • Papier K, Atkins JR, Tong TYN, et al. Identifying proteomic risk factors for cancer using prospective and exome analyses of 1463 Circulating proteins and risk of 19 cancers in the UK biobank. Nat Commun. 2024;15(1):4010.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Grassmann F, Mälarstig A, Dahl L, et al. The impact of Circulating protein levels identified by affinity proteomics on short-term, overall breast cancer risk. Br J Cancer. 2024;130(4):620–7.

    PubMed 

    Google Scholar 

  • Terry MB, Phillips KA, Daly MB, et al. Cohort profile: the breast cancer prospective family study cohort (ProF-SC). Int J Epidemiol. 2016;45(3):683–92.

    PubMed 

    Google Scholar 

  • Pharoah P, Day N, Duffy S, Easton D, Ponder B. Family history and the risk of breast cancer: a systematic review and meta-analysis. Int J Cancer. 1997;71:800–9.

    PubMed 

    Google Scholar 

  • Braithwaite D, Miglioretti DL, Zhu W, et al. Family history and breast cancer risk among older women in the breast cancer surveillance consortium cohort. JAMA Intern Med. 2018;178(4):494–501.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 2019;20(6):353–67.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu HC, Lai Y, Liao Y, et al. Plasma metabolomics profiles and breast cancer risk. Breast Cancer Res. 2024;26(1):141.

    PubMed 
    PubMed Central 

    Google Scholar 

  • John E, Hopper J, Beck J, et al. The breast cancer family registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375–89.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Uppal K, Ma C, Go YM, Jones DP, Wren J. xMWAS: a data-driven integration and differential network analysis tool. Bioinformatics. 2018;34(4):701–2.

    PubMed 

    Google Scholar 

  • Terry MB, Phillips K-A, Daly MB et al. Cohort profile: the breast cancer prospective family study cohort (ProF-SC). Int J Epidemiol 2015:1–10.

  • Lundberg M, Eriksson A, Tran B, Assarsson E, Fredriksson S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011;39(15):e102.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Assarsson E, Lundberg M, Holmquist G, et al. Homogenous 96-Plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE. 2014;9(4):e95192.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee A, Mavaddat N, Wilcox AN, et al. BOADICEA: a comprehensive breast cancer risk prediction modelincorporating genetic and nongenetic risk factors. Genet Sci. 2019;21(8):1708–18.

    Google Scholar 

  • Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer 2008;98.

  • Terry MB, Liao Y, Whittemore AS, et al. 10-year performance of four models of breast cancer risk: a validation study. Lancet Oncol. 2019;20(4):504–17.

    PubMed 

    Google Scholar 

  • Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci U S A. 1996;93(1):136–40.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang K, Pastan I. Molecular cloning and expression of a cDNA encoding a protein detected by the K1 antibody from an ovarian carcinoma (OVCAR-3) cell line. Int J Cancer. 1994;57(1):90–7.

    PubMed 

    Google Scholar 

  • Frierson HF, Moskaluk CA, Powell SM, et al. Large-scale molecular and tissue microarray analysis of mesothelin expression in common human carcinomas. Hum Pathol. 2003;34(6):605–9.

    PubMed 

    Google Scholar 

  • Parinyanitikul N, Blumenschein GR, Wu Y, et al. Mesothelin expression and survival outcomes in triple receptor negative breast cancer. Clin Breast Cancer. 2013;13(5):378–84.

    PubMed 

    Google Scholar 

  • Scholler N, Fu N, Yang Y, et al. Soluble member(s) of the mesothelin/megakaryocyte potentiating factor family are detectable in Sera from patients with ovarian carcinoma. Proc Natl Acad Sci. 1999;96(20):11531–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hassan R, Remaley AT, Sampson ML, et al. Detection and quantitation of serum mesothelin, a tumor marker for patients with mesothelioma and ovarian cancer. Clin Cancer Res. 2006;12(2):447–53.

    PubMed 

    Google Scholar 

  • Saha S, Mukherjee C, Basak D, et al. High expression of mesothelin in plasma and tissue is associated with poor prognosis and promotes invasion and metastasis in gastric cancer. Adv Cancer Biology – Metastasis. 2023;7:100098.

    Google Scholar 

  • Busser B, Sancey L, Brambilla E, Coll J-L, Hurbin A. The multiple roles of Amphiregulin in human cancer. Biochim Et Biophys Acta (BBA) – Reviews Cancer. 2011;1816(2):119–31.

    Google Scholar 

  • Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of Estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci U S A. 2007;104(13):5455–60.

    PubMed 
    PubMed Central 

    Google Scholar 

  • So WK, Fan Q, Lau MT, Qiu X, Cheng JC, Leung PC. Amphiregulin induces human ovarian cancer cell invasion by down-regulating E-cadherin expression. FEBS Lett. 2014;588(21):3998–4007.

    PubMed 

    Google Scholar 

  • Willmarth NE, Ethier SP. Autocrine and juxtacrine effects of Amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. J Biol Chem. 2006;281(49):37728–37.

    PubMed 

    Google Scholar 

  • Lofgren KA, Reker NC, Sreekumar S, Kenny PA. Pan-cancer distribution of cleaved cell-surface amphiregulin, the target of the GMF-1A3 antibody drug conjugate. Antib Ther. 2022;5(3):226–31.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kjær IM, Olsen DA, Brandslund I, et al. Dysregulated EGFR pathway in serum in early-stage breast cancer patients: A case control study. Sci Rep. 2020;10(1):6714.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Panse J, Friedrichs K, Marx A, et al. Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of breast cancer patients. Br J Cancer. 2008;99(6):930–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen L, Huang Z, Yao G, et al. The expression of CXCL13 and its relation to unfavorable clinical characteristics in young breast cancer. J Transl Med. 2015;13:168.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gunn MD, Ngo VN, Ansel KM, Ekland EH, Cyster JG, Williams LT. A B-cell-homing chemokine made in lymphoid follicles activates burkitt’s lymphoma receptor-1. Nature. 1998;391(6669):799–803.

    PubMed 

    Google Scholar 

  • Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nat Reviews Clin Oncol. 2020;17(6):349–59.

    Google Scholar 

  • Cheung A, Opzoomer J, Ilieva KM, et al. Anti-Folate receptor Alpha–Directed antibody therapies restrict the growth of Triple-negative breast cancer. Clin Cancer Res. 2018;24(20):5098–111.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheung A, Bax HJ, Josephs DH et al. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016;7(32).

  • Kelley KMM, Rowan BG, Ratnam M. Modulation of the folate receptor α gene by the Estrogen receptor: mechanism and implications in tumor Targeting12. Cancer Res. 2003;63(11):2820–8.

    PubMed 

    Google Scholar 

  • Necela BM, Crozier JA, Andorfer CA, et al. Folate Receptor-α (FOLR1) expression and function in triple negative tumors. PLoS ONE. 2015;10(3):e0122209.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bax HJ, Chauhan J, Stavraka C, et al. Folate receptor alpha in ovarian cancer tissue and patient serum is associated with disease burden and treatment outcomes. Br J Cancer. 2023;128(2):342–53.

    PubMed 

    Google Scholar 

  • Shen F, Wu M, Ross JF, Miller D, Ratnam M. Folate receptor type gamma is primarily a secretory protein due to lack of an efficient signal for glycosylphosphatidylinositol modification: protein characterization and cell type specificity. Biochemistry. 1995;34(16):5660–5.

    PubMed 

    Google Scholar 

  • Viswanathan S, Parida S, Lingipilli BT, Krishnan R, Podipireddy DR, Muniraj N. Role of gut microbiota in breast cancer and drug resistance. Pathogens 2023;12(3).

  • Malinowska AM, Schmidt M, Kok DE, Chmurzynska A. Ex vivo folate production by fecal bacteria does not predict human blood folate status: associations between dietary patterns, gut microbiota, and folate metabolism. Food Res Int. 2022;156:111290.

    PubMed 

    Google Scholar 

  • Lephart ED, Naftolin F. Estrogen action and gut Microbiome metabolism in dermal health. Dermatol Ther (Heidelb). 2022;12(7):1535–50.

    PubMed 

    Google Scholar 

  • Hu S, Ding Q, Zhang W, Kang M, Ma J, Zhao L. Gut microbial beta-glucuronidase: a vital regulator in female Estrogen metabolism. Gut Microbes. 2023;15(1):2236749.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapadgaonkar SS, Bajpai SS, Godbole MS. Gut Microbiome influences incidence and outcomes of breast cancer by regulating levels and activity of steroid hormones in women. Cancer Rep. 2023;6(11):e1847.

    Google Scholar 

  • Chapadgaonkar SS, Bajpai SS, Godbole MS. Gut Microbiome influences incidence and outcomes of breast cancer by regulating levels and activity of steroid hormones in women. Cancer Rep (Hoboken). 2023;6(11):e1847.

    PubMed 

    Google Scholar 

  • Haslam DE, Li J, Dillon ST, et al. Stability and reproducibility of proteomic profiles in epidemiological studies: comparing the Olink and SOMAscan platforms. Proteomics. 2022;22:13–4.

    Google Scholar 

  • Smith JG, Gerszten RE. Emerging Affinity-Based proteomic technologies for Large-Scale plasma profiling in cardiovascular disease. Circulation. 2017;135(17):1651–64.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Candia J, Cheung F, Kotliarov Y, et al. Assessment of variability in the SOMAscan assay. Sci Rep. 2017;7(1):14248.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading