Optimization of protease production by newly isolated Bacillus sp. from the Red Sea using defatted soybean cake

  • Rao, M. B., Tanksale, A. M., Ghatge, M. S. & Deshpande, V. V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635. https://doi.org/10.1128/mmbr.62.3.597-635.1998 (1998).

  • Kumar, D., Savitri, Thakur, N., Verma, R. & Bhalla, T.C. Microbial proteases and application as laundry detergent additive. Res. J. Microbiol. 3, 661–672. https://doi.org/10.3923/jm.2008.661.672 (2008).

  • Razzaq, A. et al. Microbial proteases applications. Front. Bioeng. Biotechnol. 7, 110. https://doi.org/10.3389/fbioe.2019.00110 (2019).

  • Song, P. et al. Microbial proteases and their applications. Front. Microbiol. 14, 1236368. https://doi.org/10.3389/fmicb.2023.1236368 (2023).

  • Craik, C. S., Page, M. J. & Madison, E. L. Proteases as therapeutics. Biochem. J. 435, 1–16 (2011). https://doi.org/10.1042/BJ20100965

  • Sundus, H., Mukhtar, H. & Nawaz, A. Industrial applications and production sources of serine alkaline proteases: a review. J. Bacteriol. Mycol. Open Access 3, 191–194. https://doi.org/10.15406/jbmoa.2016.03.00051 (2016).

  • Uddin, M. E. et al. Identification and Characterization of a Protease Producing Bacillus cereus Strain from Tannery Waste for Efficient Dehairing of Goat Skin. BioMed Res. Int. 7639181. https://doi.org/10.1155/bmri/7639181 (2025).

  • Ojo-Omoniyi, O. A., Moro, D. D. & Afolabi, O. B. Microbial Proteases: Sources, Significance and Industrial Applications. Int. J. Curr. Microbiol. Appl. Sci. 13, 1–23. https://doi.org/10.20546/ijcmas.2024.1306.001 (2024).

    Google Scholar 

  • Mienda, B. S., Yahya, A., Galadima, I. A. & Shamsir, M. S. An overview of microbial proteases for industrial applications. Res. J. Pharm. Biol. Chem. Sci 5, 388–396 (2014).

  • Banerjee, G. & Ray, A. K. Impact of microbial proteases on biotechnological industries. Biotechnol. Genet. Eng. Rev. 33, 119–143. https://doi.org/10.1080/02648725.2017.1408256 (2017)

  • Masi, C., Vivek, P., Sowmya, V., Sindhuja, V. & Parthasarathi, N. Production and process optimization of protease using various bacterial species – A review. Int. J. Chemtech. Res. 6, 4268–4275 (2014).

  • Tiwari, O. N. et al. Isolation and optimization of alkaline protease producing Bacteria from undisturbed soil of NE-region of India falling under Indo-Burma biodiversity hotspots. J. Appl. Biol. Biotechnol. 3, 25–31. https://doi.org/10.7324/JABB.2015.3406 (2015).

    Google Scholar 

  • Contesini, F. J., de Melo, R. R. & Sato, H. H. An overview of Bacillus proteases: from production to application. Crit. Rev. Biotechnol. 38, 321–334. https://doi.org/10.1080/07388551.2017.1354354 (2018).

  • Soares, V. F., Castilho, L. R., Bon, E. P. S. & Freire, D. M. G. High-yield Bacillus subtilis protease production by solid-state fermentation. Appl. Biochem. Biotechnol. 121, 311–319. https://doi.org/10.1385/ABAB:121:1-3:0311 (2005).

  • Shaheen, M., Shah, A. A., Hameed, A. & Hasan, F. Influence of culture conditions on production and activity of protease from Bacillus subtilis bs1. Pak. J. Bot. 40, 2161–2169 (2008).

  • Pedersen, N. R., Wimmer, R., Matthiesen, R., Pedersen, L. H. & Gessesse, A. Synthesis of sucrose laurate using a new alkaline protease. Tetrahedron Asymmetry 14, 667–673. https://doi.org/10.1016/S0957-4166(03)00086-7 (2003).

  • Kim, J. M., Lim, W. J. & Suh, H. J. Feather-degrading Bacillus species from poultry waste. Process. Biochem. 37, 287–291. https://doi.org/10.1016/S0032-9592(01)00206-0 (2001).

  • Dürrschmidt, P., Mansfeld, J. & Ulbrich-Hofmann, R. Differentiation between conformational and autoproteolytic stability of the neutral protease from Bacillus stearothermophilus containing an engineered disulfide bond. Eur. J. Biochem. 268, 3612–3618. https://doi.org/10.1046/j.1432-1327.2001.02270.x (2001).

  • Sharipova, M. R. et al. The expression of Bacillus intermedius Glutamyl endopeptidase gene in Bacillus subtilis Recombinant strains. Mol. Biol. Rep. 34, 79–87. https://doi.org/10.1007/s11033-006-9017-7 (2007).

  • George, S., Raju, V., Krishnan, M. R. V., Subramanian, T. V. & Jayaraman, K. Production of protease by Bacillus amyloliquefaciens in solid-state fermentation and its application in the unhairing of hides and skins. Process. Biochem. 30, 457–462. https://doi.org/10.1016/0032-9592(94)00034-4 (1995).

  • Abdel-Naby, M. A., Ismail, A. M. S. & Ahmed, S. A. & Abdel fattah, A. F. Production and immobilization of alkaline protease from Bacillus mycoides. Bioresour. Technol. 64, 205–210. https://doi.org/10.1016/S0960-8524(97)00160-0 (1998).

  • Kotb, E. Alabdalall, A. H., Alsayed, M. A., Alghamdi, A. I., Alkhaldi, E., AbdulAzeez S., et al. Isolation, Screening, and Identification of Alkaline Protease-Producing Bacteria and Application of the Most Potent Enzyme from Bacillus sp. Mar64. Fermentation 9, 637. https://doi.org/10.3390/fermentation9070637 (2023).

  • Sisa, A. et al. Evaluation of by-products from agricultural, livestock and fishing industries as nutrient source for the production of proteolytic enzymes. Heliyon 9(10), e20735. https://doi.org/10.1016/j.heliyon.2023.e20735 (2023).

  • Ramos, D. G., Silva, M. A., Oliveira, T.S., Costa, R. L. & Almeida, F. J. Exploring oil cakes in the production of proteases: a systematic review. Observatorio de La Economía Latinoamericana 22, e7830. https://doi.org/10.55905/oelv22n11-146 (2024).

    Google Scholar 

  • Dias, F. F. G. et al. Effects of protease-assisted aqueous extraction on almond protein profile, digestibility, and antigenicity. Curr. Res. Food Sci. 6, 100488. https://doi.org/10.1016/j.crfs.2023.100488 (2023).

  • Ho, J. C. K. & Sze, L. Y. Isolation, identification and characterization of enzyme-producing lactic acid bacteria from traditional fermented foods. Biosci. Horiz. 11, hzy004 (2018). https://doi.org/10.1093/biohorizons/hzy004

  • da Silva, O. S., de Oliveira, R. L., Souza-Motta, C. M., Porto, A. L. F. & Porto, T. S. Novel Protease from Aspergillus tamarii URM4634: Production and Characterization Using Inexpensive Agroindustrial Substrates by Solid-State Fermentation. Adv. Enzyme Res. 4, 125–143. https://doi.org/10.4236/aer.2016.44012 (2016).

    Google Scholar 

  • Marín, M., Artola, A. & Sánchez, A. Production of proteases from organic wastes by solid-state fermentation: downstream and zero waste strategies. 3 Biotech. 8, 205. https://doi.org/10.1007/s13205-018-1226-y (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sneha, S. & Das, M. P. & Jeyanthi rebecca, L. Isolation and screening of protease producing bacteria from marine waste. J. Chem. Pharm. Res. 6, 1157–1159 (2014).

  • Masi, C., Chandramohan, C. & Ahmed, M. F. Immobilization of the magnetic nanoparticles with alkaline protease enzyme produced by Enterococcus hirae and Pseudomonas aeruginosa isolated from dairy effluents. Braz. Arch. Biol. Technol. 60, e17160572. https://doi.org/10.1590/1678-4324-2017160572 (2017).

  • Uyar, F., Porsuk, I., Kızıl, G. & Yilmaz, E. I. Optimal conditions for production of extracellular protease from newly isolated Bacillus cereus strain CA15. Eurasia J. BioSci. 5, 1–9. https://doi.org/10.5053/ejobios.2011.5.0.1 (2011).

    Article 

    Google Scholar 

  • Buchanan, R. E. & Gibbons, N. E. Bergey’s Manual of Determinative Bacteriology. 8th ed. Williams & Wilkins Co., Baltimore, xxvi + 1246 pp. (1974).

  • Jukes, T. H. & Cantor, C. R. Evolution of protein molecules. In Mammalian Protein Metabolism (ed. Munro, H. N.) 21–132 (Academic Press, New York, 1969). https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.

  • Tsuchida, O. et al. An alkaline proteinase of an alkalophilic Bacillus sp. Curr. Microbiol. 14, 7–12. https://doi.org/10.1007/BF01568094 (1986).

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

  • Amin, O. E., Aboul-Enein, A. M. & Abd-Elsalam, I. S. & Wahba, M. I. Bacillus amyloliquefaciens alkaline protease: potential applications and stabilization. Egypt J. Chem 66, 1279–1293. https://doi.org/10.21608/ejchem.2023.189194.7499 (2023).

  • Gupta, R., Beg, Q. K. & Lorenz, P. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59, 15–32. https://doi.org/10.1007/s00253-002-0975-y (2002).

  • Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 (1987).

  • Giovannoni, J. J., Wing, R. A., Ganal, M. W. & Tanksley, S. D. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res. 19, 6553–6558. https://doi.org/10.1093/nar/19.23.6553 (1991).

  • Yang, J. K., Shih, I. L., Tzeng, Y. M. & Wang, S. L. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb. Technol. 26, 406–413. https://doi.org/10.1016/s0141-0229(99)00164-7 (2000).

  • Olajuyigbe, M. & Ogunyewo, A. F. O. Enhanced production and physicochemical properties of a commercially viable alkaline protease from Bacillus amyloliquefaciens PFB-01. Curr. Biotechnol. 2, 73–80. https://doi.org/10.2174/2211550111302010012 (2015).

  • Joo, H. S. et al. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process. Biochem. 38, 155–159. https://doi.org/10.1016/S0032-9592(02)00061-4 (2002).

  • Nilegaonkar, S. et al. Production, isolation and characterization of extracellular protease of an alkaliphilic strain of Arthrobacter ramosus, MCM B-351 isolated from the alkaline lake of Lonar, India. World J. Microbiol. Biotechnol. 18, 785–789. https://doi.org/10.1023/A:1020481126362 (2002).

  • Prakasham, R. S., Rao, C. S. & Sarma, P. N. Green gram husk—an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 97, 1449–1454. https://doi.org/10.1016/j.biortech.2005.07.015 (2006).

  • Rojas-Avelizapa, L. I., Cruz-Camarillo, R., Guerrero, M. I., Rodríguez-Vázquez, R. & Ibarra, J. E. Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media. World J. Microbiol. Biotechnol. 15, 299–308. https://doi.org/10.1023/A:1008947029713 (1999).

  • Saba, I., Hamid, M. & Ikram-ul-Haq. Production of alkaline protease by Bacillus subtilis using solid state fermentation. Afr. J. Microbiol. Res. 7, 1558–1568. https://doi.org/10.5897/AJMR12.1845 (2013).

  • Uyar, F. & Baysal, Z. Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process. Biochem. 39, 1893–1898. https://doi.org/10.1016/j.procbio.2003.09.016 (2004).

  • Nahashon, S. N. & Kilonzo-Nthenge, A. K. Advances in soybean and soybean by-products in monogastric nutrition and health. In: Soybean and Nutrition (ed. El-Shemy, H.) (IntechOpen, 2011). https://doi.org/10.5772/21135.

  • Zhang, J. et al. Modular genetic engineering of Bacillus amyloliquefaciens for enhanced biosynthesis of alkaline proteases derived from Bacillus clausii. Sci. Rep. 12, 1–16. https://doi.org/10.3389/fbioe.2022.866066 (2022).

  • Sharma, K. M., Kumar, R., Panwar, S. & Kumar, A. Microbial alkaline proteases: optimization of production parameters and their properties. J. Genetic Eng. Biotechnol. 15, 115. https://doi.org/10.1016/j.jgeb.2017.02.001 (2017).

    Google Scholar 

  • Beg, Q. K., Sahai, V. & Gupta, R. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process. Biochem. 39, 203–209. https://doi.org/10.1016/S0032-9592(03)00064-5 (2003).

  • Ramkumar, A. et al. Production of thermotolerant, detergent stable alkaline protease using the gut waste of Sardinella longiceps as a substrate: Optimization and characterization. Sci. Rep. 8, 12442. https://doi.org/10.1038/s41598-018-30155-9 (2018).

  • Sattar Qureshi, A., Aqeel Bhutto, M., Khushk, I. & Umar dahot, M. Optimization of cultural conditions for protease production by Bacillus subtilis EFRL 01. Afr. J. Biotechnol. 10, 5173–5181 (2011).

  • Nourine, Z. et al. Production and characterization of alkaline protease by Bacillus subtilis using fish gut waste as a substrate. Egypt. Acad. J. Biolog. Sci. C Physiol. Mol. Biol. 15, 85–96. https://doi.org/10.21608/eajbsc.2023.282301 (2023).

  • George-Okafor, U. O. & Mike-Anosike, E. E. Screening and optimal protease production by Bacillus sp. SW-2 using low-cost substrate medium. Res. J. Microbiol. 7, 327–336 (2012).

  • Rai, S. K. & Mukherjee, A. K. Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochem. Eng. J. 48, 173–180. https://doi.org/10.1016/j.bej.2009.09.007 (2010).

  • Mukherjee, A. K., Adhikari, H. & Rai, S. K. Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation. Biochem. Eng. J. 39, 353–361. https://doi.org/10.1016/j.bej.2007.09.017 (2008).

  • Abidi, F., Limam, F. & Marzouki, M. N. Production of alkaline proteases by Botrytis cinerea using economic raw materials: assay as biodetergent. Process. Biochem. 43, 1202–1208. https://doi.org/10.1016/j.procbio.2008.06.018 (2008).

  • Do Nascimento, W. C. A. & Leal Martins, M. L. Production and properties of an extracellular protease from thermophilic Bacillus Sp. Brazilian J. Microbiol. 35, 91–96 (2004).

  • Mukhtar, H. & Haq, I. Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation. Sci. World J. 538067. https://doi.org/10.1155/2013/538067 (2013).

  • Naveed, M. et al. Isolation of lysozyme producing Bacillus subtilis strains, identification of the new strain Bacillus subtilis BSN314 with the highest enzyme production capacity and optimization of culture conditions for maximum lysozyme production. Curr. Res. Biotechnol. 4, 290–301. https://doi.org/10.1016/j.crbiot.2022.06.002 (2022).

    Google Scholar 

  • Pan, S., Chen, G., Wu, R., Zeng, J. & Liang, Z. Fibrinolytic enzyme production from low-cost substrates by marine Bacillus subtilis: Process optimization and kinetic modeling. Biochem. Eng. J. 141, 268–277. https://doi.org/10.1016/j.bej.2018.11.002 (2019).

    Google Scholar 

  • Joo, H. S. & Chang, C. S. Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process. Biochem. 40, 1263–1270. https://doi.org/10.1016/j.procbio.2004.05.010 (2005).

    Google Scholar 

  • Zhang, Y. et al. Enhancement of alkaline protease production in recombinant Bacillus licheniformis by response surface methodology. Bioresour. Bioprocess. 10, 27. https://doi.org/10.1186/s40643-023-00641-8 (2023).

    Google Scholar 

  • Continue Reading