Fujita, M. et al. The Spatial Economy: Cities, Regions, and International Trade (MIT Press, 2001).
Colizza, V., Barrat, A., Barthélemy, M. & Vespignani, A. The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl Acad. Sci. USA 103, 2015–2020 (2006).
Google Scholar
Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337–1342 (2013).
Google Scholar
Setton, E. et al. The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. J. Expo. Sci. Environ. Epidemiol. 21, 42–48 (2011).
Google Scholar
Coutrot, A. et al. Entropy of city street networks linked to future spatial navigation ability. Nature 604, 104–110 (2022).
Google Scholar
Pumain, D. Pour une théorie évolutive des villes. Espace Géogr. 26, 119–134 (1997).
Arcaute, E. Hierarchies defined through human mobility. Nature 587, 372–373 (2020).
Google Scholar
Arcaute, E. & Ramasco, J. J. Recent advances in urban system science: models and data. PLoS ONE 17, e0263200 (2022).
Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439, 462–465 (2006).
Google Scholar
Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).
Google Scholar
Schläpfer, M. et al. The universal visitation law of human mobility. Nature 593, 522–527 (2021).
Google Scholar
Zipf, G. K. The p1p2/d hypothesis: on the intercity movement of persons. Am. Sociol. Rev. 11, 677–686 (1946).
Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A universal model for mobility and migration patterns. Nature 484, 96–100 (2012).
Google Scholar
Alessandretti, L., Sapiezynski, P., Sekara, V., Lehmann, S. & Baronchelli, A. Evidence for a conserved quantity in human mobility. Nat. Hum. Behav. 2, 485–491 (2018).
Google Scholar
Alessandretti, L., Aslak, U. & Lehmann, S. The scales of human mobility. Nature 587, 402–407 (2020).
Google Scholar
Pumain, D. (ed.) Hierarchy in Natural and Social Sciences (Springer, 2006).
Arcaute, E. et al. Cities and regions in Britain through hierarchical percolation. R. Soc. Open Sci. 3, 150691 (2016).
Google Scholar
Wilson, A. G. Entropy in Urban and Regional Modelling (Pion, 1970).
Ripley, B. D. Modelling spatial patterns. J. R. Stat. Soc. B 39, 172–212 (1977).
Samaniego, H. & Moses, M. E. Cities as organisms: allometric scaling of urban road networks. J. Transp. Land Use 1, 21–39 (2008).
Lee, M., Barbosa, H., Youn, H., Holme, P. & Ghoshal, G. Morphology of travel routes and the organization of cities. Nat. Commun. 8, 2229 (2017).
Google Scholar
Batty, M. & Longley, P. Fractal Cities: A Geometry of Form and Function (Academic Press, 1994).
Frankhauser, P. The fractal approach: a new tool for the spatial analysis of urban agglomerations. Popul. Engl. Sel. 10, 205–240 (1998).
Barbosa, H. et al. Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018).
Carrothers, V. A historical review of the gravity and potential concepts of human interaction. J. Am. Inst. Plann. 22, 94–102 (1956).
Wilson, A. G. A statistical theory of spatial distribution models. Transp. Res. 1, 253–269 (1967).
Google Scholar
Stouffer, S. Intervening opportunities: a theory relating mobility and distance. Am. Sociol. Rev. 5, 845–867 (1940).
Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A tale of many cities: universal patterns in human urban mobility. PLoS ONE 7, e40692 (2012).
Mazzoli, M. et al. Field theory for recurrent mobility. Nat. Commun. 10, 3895 (2019).
Google Scholar
Yan, X.-Y., Wang, W.-X., Gao, Z.-Y. & Lai, Y.-C. Universal model of individual and population mobility on diverse spatial scales. Nat. Commun. 8, 1639 (2017).
Google Scholar
Han, X.-P., Hao, Q., Wang, B.-H. & Zhou, T. Origin of the scaling law in human mobility: hierarchy of traffic systems. Phys. Rev. E 83, 036117 (2011).
Hong, I., Jung, W.-S. & Jo, H.-H. Gravity model explained by the radiation model on a population landscape. PLoS ONE 14, e0218028 (2019).
Google Scholar
Cohen, J. E. & Courgeau, D. Modeling distances between humans using Taylor’s law and geometric probability. Math. Popul. Stud. 24, 197–218 (2017).
Gao, Q. et al. Identifying human mobility via trajectory embeddings. In Proc. 26th International Joint Conference on Artificial Intelligence (ed. Sierra, C.) 1689–1695 (International Joint Conferences on Artificial Intelligence, 2017).
Murray, D. et al. Unsupervised embedding of trajectories captures the latent structure of scientific migration. Proc. Natl Acad. Sci. USA 120, e2305414120 (2023).
Google Scholar
Hansen, J.-P. & McDonald, I. R. Theory of Simple Liquids: with Applications to Soft Matter 2nd edn (Academic Press, 1986).
Nijkamp, P. & Reggiani, A. A Synthesis Between Macro and Micro Models in Spatial Interaction Analysis, with Special Reference to Dynamics Tech. Rep. (VU Univ. Amsterdam, Faculty of Economics and Business Administration, 1986).
Clark, C. Urban population densities. J. R. Stat. Soc. A 114, 490–496 (1951).
Newling, B. E. The spatial variation of urban population densities. Geogr. Rev. 59, 242–252 (1969).
Bertaud, A. & Malpezzi, S. The Spatial Distribution of Population in 48 World Cities: Implications for Economies in Transition Working Paper (Center for Urban Land Economics Research, Univ. Wisconsin, 2003).
Duranton, G. & Puga, D. in Handbook of Regional and Urban Economics Vol. 4 (eds Henderson, J. V. & Thisse, J.-F.) 2063–2117 (Elsevier, 2004).
Lennard-Jones, J. E. Cohesion. Proc. Phys. Soc. 43, 461–482 (1931).
Google Scholar
Ornstein, L. S. & Zernike, F. Accidental deviations of density and opalescence at the critical point of a single substance. Proc. R. Netherlands Acad. Arts Sci. 17, 793–806 (1914).
Christaller, W. Die Zentralen Orte in Süddeutschland (Gustav Fischer, 1933).
Soneira, R. M. & Peebles, P. J. E. A computer model universe: simulation of the nature of the galaxy distribution in the Lick catalog. Astron. J. 83, 845–860 (1978).
Makse, H. A., Havlin, S. & Stanley, H. E. Modelling urban growth patterns. Nature 377, 608–612 (1995).
Google Scholar
Cadwallader, M. Migration and Residential Mobility: Macro and Micro Approaches (Univ. Wisconsin Press, 1992).
Pappalardo, L., Manley, E., Sekara, V. & Alessandretti, L. Future directions in human mobility science. Nat. Comput. Sci. 3, 7 (2023).
Clark, W. A., Huang, Y. & Withers, S. Does commuting distance matter? Commuting tolerance and residential change. Reg. Sci. Urban Econ. 33, 199–221 (2003).
Weber, A. & Friedrich, C. J. Alfred Weber’s Theory of the Location of Industries (Univ. Chicago Press, 1929).
Moduldata for Befolkning og Valg (Danmarks Statistik, 2024); https://www.dst.dk/da/Statistik/dokumentation/Times/moduldata-for-befolkning-og-valg
Api Documentation for Adgangsadresse (Dataforsyningen, 2023); https://dawadocs.dataforsyningen.dk/dok/api/adgangsadresse
Schlosser, F., Sekara, V., Brockmann, D. & Garcia-Herranz, M. Biases in human mobility data impact epidemic modeling. Preprint at arXiv https://doi.org/10.48550/arXiv.2112.12521 (2021).
Wesolowski, A., Eagle, N., Noor, A. M., Snow, R. W. & Buckee, C. O. The impact of biases in mobile phone ownership on estimates of human mobility. J. R. Soc. Interface 10, 20120986 (2013).
Google Scholar
Jacobsen, R., Møller, H. & Mouritsen, A. Natural variation in the human sex ratio. Hum. Reprod. 14, 3120–3125 (1999).
Google Scholar
Births (Statistics Denmark, 2024); https://www.dst.dk/en/Statistik/emner/borgere/befolkning/foedsler
Campello, R. J., Moulavi, D. & Sander, J. Density-based clustering based on hierarchical density estimates. In Proc. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (eds Pei, J. et al.) 160–172 (Springer, 2013).
Yang, D., Zhang, D. & Qu, B. Participatory cultural mapping based on collective behavior data in location-based social networks. ACM Trans. Intell. Syst. Technol. 7, 30:1–30:23 (2015).
Runfola, D. et al. geoBoundaries: a global database of political administrative boundaries. PLoS ONE 15, e0231866 (2020).
Google Scholar
Liang, X., Zhao, J., Dong, L. & Xu, K. Unraveling the origin of exponential law in intra-urban human mobility. Sci. Rep. 3, 2983 (2013).
Google Scholar
Maier, B. F. Generalization of the small-world effect on a model approaching the Erdős–Rényi random graph. Sci. Rep. 9, 9268 (2019).
Google Scholar
Verlet, L. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98 (1967).
Google Scholar
Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).
Google Scholar
Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).
Hanel, R., Corominas-Murtra, B., Liu, B. & Thurner, S. Fitting power-laws in empirical data with estimators that work for all exponents. PLoS ONE 12, e0170920 (2017).
Google Scholar
Bauke, H. Parameter estimation for power-law distributions by maximum likelihood methods. Eur. Phys. J. B 58, 167–173 (2007).
Google Scholar
Maier, B. F. Maximum-likelihood fits of piece-wise Pareto distributions with finite and non-zero core. Preprint at arXiv https://doi.org/10.48550/arXiv.2309.09589 (2023).
Boucherie, L., Maier, B. & Lehmann, S. Decomposing geographical and universal aspects of human mobility. Zenodo https://doi.org/10.5281/zenodo.14329837 (2024).