Effects of population density on immunity and reproduction in bean beetles Callosobruchus maculatus

  • Noordwijk, A. J. & van de Jong, G. Acquisition and allocation of resources : their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).

    Google Scholar 

  • Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).

    Google Scholar 

  • Roff, D. A. Life History Evolution. (2002).

  • J Emlen, D. Environmental control of Horn length dimorphism in the beetle onthophagus acuminatus (Coleoptera: Scarabaeida). Proc. R Soc. Lond. B Biol. Sci. 256, 131–136 (1994).

    ADS 

    Google Scholar 

  • Moczek, A. P. & Emlen, D. J. Male Horn dimorphism in the scarab beetle, Onthophagus taurus: do alternative reproductive tactics favour alternative phenotypes? Anim. Behav. 59, 459–466 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Braendle, C., Friebe, I., Caillaud, M. C. & Stern, D. L. Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism. Proc. R Soc. B Biol. Sci. 272, 657–664 (2005).

    Google Scholar 

  • Yamane, T., Okada, K., Nakayama, S. & Miyatake, T. Dispersal and ejaculatory strategies associated with exaggeration of weapon in an armed beetle. Proc. R Soc. B Biol. Sci. 277, 1705–1710 (2010).

    Google Scholar 

  • Smallegange, I. M., Deere, J. A. & Coulson, T. Correlative changes in life-history variables in response to environmental change in a model organism. Am. Nat. 183, 784–797 (2014).

    PubMed 

    Google Scholar 

  • Katsuki, M. & Lewis, Z. A trade-off between pre- and post-copulatory sexual selection in a bean beetle. Behav. Ecol. Sociobiol. 69, 1597–1602 (2015).

    Google Scholar 

  • Johnson, T. L., Symonds, M. R. E. & Elgar, M. A. Anticipatory flexibility: larval population density in moths determines male investment in antennae, wings and testes. Proc. R. Soc. B Biol. Sci. 284, (2017).

  • Peterson, M. L., Doak, D. F. & Morris, W. F. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis. Glob Change Biol. 24, 1614–1625 (2018).

    ADS 

    Google Scholar 

  • Snell-Rood, E. C. & Moczek, A. P. Insulin signaling as a mechanism underlying developmental plasticity: the role of FOXO in a nutritional polyphenism. PLoS One 7.4, e34857 (2012).

  • Brommer, J. E. The evolution of fitness in life-history theory. Biol. Rev. 75, 377–404 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Freitak, D., Wheat, C. W., Heckel, D. G. & Vogel, H. Immune system responses and fitness costs associated with consumption of bacteria in larvae of trichoplusia Ni. BMC Biol. 5, 56 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanson, M. A., Lemaitre, B. & Unckless, R. L. Dynamic evolution of antimicrobial peptides underscores Trade-Offs between immunity and ecological fitness. Front Immunol 10, 2620 (2019).

  • Hosken, D. J. Sex and death: microevolutionary trade-offs between reproductive and immune investment in Dung flies. Curr. Biol. 11, 379–380 (2001).

    Google Scholar 

  • Iglesias-Carrasco, M., Head, M. L., Jennions, M. D. & Cabido, C. Condition-dependent trade-offs between sexual traits, body condition and immunity: the effect of novel habitats. BMC Evol. Biol. 16, 1–10 (2016).

    Google Scholar 

  • Leman, J. C. et al. Lovesick: immunological costs of mating to male sagebrush crickets. J. Evol. Biol. 22, 163–171 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Fuxa, J. R. & Tanada, Y. Epizootiology of Insect Diseases (Wiley, 1991).

  • Wilson, K. & Cotter, S. Density-Dependent Prophylaxis in Insects. in Phenotypic Plasticity of Insects (eds. Whitman, D. & Ananthakrishnan, T.)Science Publishers, (2009). https://doi.org/10.1201/b10201-7

  • Møller, A. P. Parasites and sexual selection: current status of the Hamilton and Zuk hypothesis. J. Evol. Biol. 3, 319–328 (1990).

    Google Scholar 

  • Dewsbury, D. A. The Darwin-Bateman paradigm in historical Context1. Integr. Comp. Biol. 45, 831–837 (2005).

    PubMed 

    Google Scholar 

  • Janicke, T., Häderer, I. K., Lajeunesse, M. J. & Anthes, N. Darwinian sex roles confirmed across the animal Kingdom. Sci. Adv. 2, e1500983 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Zuk, M. & McKean, K. A. Sex differences in parasite infections: patterns and processes. Int. J. Parasitol. 26, 1009–1024 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Rolff, J. Bateman’s principle and immunity. Proc. R Soc. B Biol. Sci. 269, 867–872 (2002).

    Google Scholar 

  • Marmaras, V. J., Charalambidis, N. D. & Zervas, C. G. Immune response in insects: the role of phenoloxidase in defense reactions in relation to melanization and sclerotization. Arch. Insect Biochem. Physiol. 31, 119–133 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Gillespie, J. P., Kanost, M. R. & Trenczek, T. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611–643 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. Insect Immunol. 1, 69–96 (2008).

    Google Scholar 

  • Schmid-Hempel, P. Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50, 529–551 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Roers, A., Hiller, B. & Hornung, V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kelly, C. D., Stoehr, A. M., Nunn, C., Smyth, K. N. & Prokop, Z. M. Sexual dimorphism in immunity across animals: a meta-analysis. Ecol. Lett. 21, 1885–1894 (2018).

    PubMed 

    Google Scholar 

  • McAfee, A., Chapman, A., Pettis, J. S., Foster, L. J. & Tarpy, D. R. Trade-offs between sperm viability and immune protein expression in honey bee queens (Apis mellifera). Commun. Biol. 4, 1–11 (2021).

    Google Scholar 

  • Gascoigne, S. J. L., Nalukwago, U., Barbosa, F. & D. I. & Larval density, sex, and allocation hierarchy affect life history trait covariances in a bean beetle. Am. Nat. 199, 291–301 (2022).

    PubMed 

    Google Scholar 

  • Nokelainen, O., Lindstedt, C. & Mappes, J. Environment-mediated morph‐linked immune and life‐history responses in the aposematic wood tiger moth. J. Anim. Ecol. 82, 653–662 (2013).

    PubMed 

    Google Scholar 

  • Silva, F. W. et al. Two’s a crowd: phenotypic adjustments and prophylaxis in Anticarsia gemmatalis larvae are triggered by the presence of conspecifics. PloS One. 8, e61582 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bailey, N. W., Gray, B. & Zuk, M. Does immunity vary with population density in wild populations of Mormon crickets? Evol. Ecol. Res. 10, 599–610 (2008).

    Google Scholar 

  • Wilson, K. et al. Coping with crowds: density-dependent disease resistance in desert locusts. Proc. Natl. Acad. Sci. 99, 5471–5475 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly, C. D. & L’Heureux, V. Effect of rearing density on female investment in reproduction and melanotic encapsulation response in the sand cricket (Gryllus firmus) (Orthoptera: Gryllidae). Biol. J. Linn. Soc. 144, blae023 (2024).

    Google Scholar 

  • Kelly, C. D., L’Heureux, V., Wey, T. W. & Réale, D. Effect of rearing density on the expression of fitness-related traits in male sand field crickets (Gryllus firmus). Evol. Ecol. 37, 835–846 (2023).

    Google Scholar 

  • Rolff, J. & Siva-Jothy, M. T. Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc. Natl. Acad. Sci. 99, 9916–9918 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Insect seminal fluid proteins: identification and function. Annu. Rev. Entomol. 56, 21–40 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Immonen, E., Sayadi, A., Bayram, H. & Arnqvist, G. Mating changes sexually dimorphic gene expression in the seed beetle Callosobruchus maculatus. Genome Biol. Evol. 9, 677–699 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zera, A. J. The endocrine regulation of wing polymorphism in insects: state of the art, recent surprises, and future directions1. Integr. Comp. Biol. 43, 607–616 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Wilson, K. Evolution of clutch size in insects. II. A test of static optimality models using the beetle Callosobruchus maculatus (Coleoptera: Bruchidae). J. Evol. Biol. 7, 365–386 (1994).

    Google Scholar 

  • Vamosi, S. M. Interactive effects of larval host and competition on adult fitness: an experimental test with seed beetles (Coleoptera: Bruchidae). Funct. Ecol. 19, 859–864 (2005).

    Google Scholar 

  • Beck, C. W. & Blumer, L. S. A handbook on bean beetles, Callosobruchus maculatus. Caryologia 24, 157–166 (2011).

    Google Scholar 

  • Utida, S. Density dependent polymorphism in the adult of Callosobruchus maculatus (Coleoptera, Bruchidae). J. Stored Prod. Res. 8, 111–125 (1972).

    Google Scholar 

  • Dougherty, L. R. et al. Sexual conflict and correlated evolution between male persistence and female resistance traits in the seed beetle Callosobruchus maculatus. Proc. R. Soc. B Biol. Sci. 284, (2017).

  • Rasband, W. S. ImageJ. (1997).

  • Microsystems, L. Leica application Suite version 2.0. (2010).

  • Peterson, R. A. Finding optimal normalizing transformations via bestNormalize. (2021).

  • SAS Institute Inc. JMP®. (1989).

  • Continue Reading