Noordwijk, A. J. & van de Jong, G. Acquisition and allocation of resources : their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).
Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).
Roff, D. A. Life History Evolution. (2002).
J Emlen, D. Environmental control of Horn length dimorphism in the beetle onthophagus acuminatus (Coleoptera: Scarabaeida). Proc. R Soc. Lond. B Biol. Sci. 256, 131–136 (1994).
Google Scholar
Moczek, A. P. & Emlen, D. J. Male Horn dimorphism in the scarab beetle, Onthophagus taurus: do alternative reproductive tactics favour alternative phenotypes? Anim. Behav. 59, 459–466 (2000).
Google Scholar
Braendle, C., Friebe, I., Caillaud, M. C. & Stern, D. L. Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism. Proc. R Soc. B Biol. Sci. 272, 657–664 (2005).
Yamane, T., Okada, K., Nakayama, S. & Miyatake, T. Dispersal and ejaculatory strategies associated with exaggeration of weapon in an armed beetle. Proc. R Soc. B Biol. Sci. 277, 1705–1710 (2010).
Smallegange, I. M., Deere, J. A. & Coulson, T. Correlative changes in life-history variables in response to environmental change in a model organism. Am. Nat. 183, 784–797 (2014).
Google Scholar
Katsuki, M. & Lewis, Z. A trade-off between pre- and post-copulatory sexual selection in a bean beetle. Behav. Ecol. Sociobiol. 69, 1597–1602 (2015).
Johnson, T. L., Symonds, M. R. E. & Elgar, M. A. Anticipatory flexibility: larval population density in moths determines male investment in antennae, wings and testes. Proc. R. Soc. B Biol. Sci. 284, (2017).
Peterson, M. L., Doak, D. F. & Morris, W. F. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis. Glob Change Biol. 24, 1614–1625 (2018).
Google Scholar
Snell-Rood, E. C. & Moczek, A. P. Insulin signaling as a mechanism underlying developmental plasticity: the role of FOXO in a nutritional polyphenism. PLoS One 7.4, e34857 (2012).
Brommer, J. E. The evolution of fitness in life-history theory. Biol. Rev. 75, 377–404 (2000).
Google Scholar
Freitak, D., Wheat, C. W., Heckel, D. G. & Vogel, H. Immune system responses and fitness costs associated with consumption of bacteria in larvae of trichoplusia Ni. BMC Biol. 5, 56 (2007).
Google Scholar
Hanson, M. A., Lemaitre, B. & Unckless, R. L. Dynamic evolution of antimicrobial peptides underscores Trade-Offs between immunity and ecological fitness. Front Immunol 10, 2620 (2019).
Hosken, D. J. Sex and death: microevolutionary trade-offs between reproductive and immune investment in Dung flies. Curr. Biol. 11, 379–380 (2001).
Iglesias-Carrasco, M., Head, M. L., Jennions, M. D. & Cabido, C. Condition-dependent trade-offs between sexual traits, body condition and immunity: the effect of novel habitats. BMC Evol. Biol. 16, 1–10 (2016).
Leman, J. C. et al. Lovesick: immunological costs of mating to male sagebrush crickets. J. Evol. Biol. 22, 163–171 (2009).
Google Scholar
Fuxa, J. R. & Tanada, Y. Epizootiology of Insect Diseases (Wiley, 1991).
Wilson, K. & Cotter, S. Density-Dependent Prophylaxis in Insects. in Phenotypic Plasticity of Insects (eds. Whitman, D. & Ananthakrishnan, T.)Science Publishers, (2009). https://doi.org/10.1201/b10201-7
Møller, A. P. Parasites and sexual selection: current status of the Hamilton and Zuk hypothesis. J. Evol. Biol. 3, 319–328 (1990).
Dewsbury, D. A. The Darwin-Bateman paradigm in historical Context1. Integr. Comp. Biol. 45, 831–837 (2005).
Google Scholar
Janicke, T., Häderer, I. K., Lajeunesse, M. J. & Anthes, N. Darwinian sex roles confirmed across the animal Kingdom. Sci. Adv. 2, e1500983 (2016).
Google Scholar
Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).
Google Scholar
Zuk, M. & McKean, K. A. Sex differences in parasite infections: patterns and processes. Int. J. Parasitol. 26, 1009–1024 (1996).
Google Scholar
Rolff, J. Bateman’s principle and immunity. Proc. R Soc. B Biol. Sci. 269, 867–872 (2002).
Marmaras, V. J., Charalambidis, N. D. & Zervas, C. G. Immune response in insects: the role of phenoloxidase in defense reactions in relation to melanization and sclerotization. Arch. Insect Biochem. Physiol. 31, 119–133 (1996).
Google Scholar
Gillespie, J. P., Kanost, M. R. & Trenczek, T. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611–643 (1997).
Google Scholar
Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. Insect Immunol. 1, 69–96 (2008).
Schmid-Hempel, P. Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50, 529–551 (2005).
Google Scholar
Roers, A., Hiller, B. & Hornung, V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754 (2016).
Google Scholar
Kelly, C. D., Stoehr, A. M., Nunn, C., Smyth, K. N. & Prokop, Z. M. Sexual dimorphism in immunity across animals: a meta-analysis. Ecol. Lett. 21, 1885–1894 (2018).
Google Scholar
McAfee, A., Chapman, A., Pettis, J. S., Foster, L. J. & Tarpy, D. R. Trade-offs between sperm viability and immune protein expression in honey bee queens (Apis mellifera). Commun. Biol. 4, 1–11 (2021).
Gascoigne, S. J. L., Nalukwago, U., Barbosa, F. & D. I. & Larval density, sex, and allocation hierarchy affect life history trait covariances in a bean beetle. Am. Nat. 199, 291–301 (2022).
Google Scholar
Nokelainen, O., Lindstedt, C. & Mappes, J. Environment-mediated morph‐linked immune and life‐history responses in the aposematic wood tiger moth. J. Anim. Ecol. 82, 653–662 (2013).
Google Scholar
Silva, F. W. et al. Two’s a crowd: phenotypic adjustments and prophylaxis in Anticarsia gemmatalis larvae are triggered by the presence of conspecifics. PloS One. 8, e61582 (2013).
Google Scholar
Bailey, N. W., Gray, B. & Zuk, M. Does immunity vary with population density in wild populations of Mormon crickets? Evol. Ecol. Res. 10, 599–610 (2008).
Wilson, K. et al. Coping with crowds: density-dependent disease resistance in desert locusts. Proc. Natl. Acad. Sci. 99, 5471–5475 (2002).
Google Scholar
Kelly, C. D. & L’Heureux, V. Effect of rearing density on female investment in reproduction and melanotic encapsulation response in the sand cricket (Gryllus firmus) (Orthoptera: Gryllidae). Biol. J. Linn. Soc. 144, blae023 (2024).
Kelly, C. D., L’Heureux, V., Wey, T. W. & Réale, D. Effect of rearing density on the expression of fitness-related traits in male sand field crickets (Gryllus firmus). Evol. Ecol. 37, 835–846 (2023).
Rolff, J. & Siva-Jothy, M. T. Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc. Natl. Acad. Sci. 99, 9916–9918 (2002).
Google Scholar
Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Insect seminal fluid proteins: identification and function. Annu. Rev. Entomol. 56, 21–40 (2011).
Google Scholar
Immonen, E., Sayadi, A., Bayram, H. & Arnqvist, G. Mating changes sexually dimorphic gene expression in the seed beetle Callosobruchus maculatus. Genome Biol. Evol. 9, 677–699 (2017).
Google Scholar
Zera, A. J. The endocrine regulation of wing polymorphism in insects: state of the art, recent surprises, and future directions1. Integr. Comp. Biol. 43, 607–616 (2003).
Google Scholar
Wilson, K. Evolution of clutch size in insects. II. A test of static optimality models using the beetle Callosobruchus maculatus (Coleoptera: Bruchidae). J. Evol. Biol. 7, 365–386 (1994).
Vamosi, S. M. Interactive effects of larval host and competition on adult fitness: an experimental test with seed beetles (Coleoptera: Bruchidae). Funct. Ecol. 19, 859–864 (2005).
Beck, C. W. & Blumer, L. S. A handbook on bean beetles, Callosobruchus maculatus. Caryologia 24, 157–166 (2011).
Utida, S. Density dependent polymorphism in the adult of Callosobruchus maculatus (Coleoptera, Bruchidae). J. Stored Prod. Res. 8, 111–125 (1972).
Dougherty, L. R. et al. Sexual conflict and correlated evolution between male persistence and female resistance traits in the seed beetle Callosobruchus maculatus. Proc. R. Soc. B Biol. Sci. 284, (2017).
Rasband, W. S. ImageJ. (1997).
Microsystems, L. Leica application Suite version 2.0. (2010).
Peterson, R. A. Finding optimal normalizing transformations via bestNormalize. (2021).
SAS Institute Inc. JMP®. (1989).