Enteroendocrine cells: the gatekeepers of microbiome-gut-brain communication

  • Carabotti, M., Scirocco, A., Antonietta Maselli, M. & Severi, C. The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems 28 www.annalsgastro.gr (2015).

  • Worthington, J. J., Reimann, F. & Gribble, F. M. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol. 11, 3–20 (2018).

    PubMed 

    Google Scholar 

  • Latorre, R., Sternini, C., De Giorgio, R. & Greenwood-Van Meerveld, B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol. Motil. 28, 620–630 (2016).

    PubMed 

    Google Scholar 

  • Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).

    PubMed 

    Google Scholar 

  • Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).

    PubMed 

    Google Scholar 

  • Zeve, D. et al. Robust differentiation of human enteroendocrine cells from intestinal stem cells. Nat. Commun. 13, 261 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Atanga, R., Singh, V. & In, J. G. Intestinal enteroendocrine cells: present and future druggable targets. Int. J. Mol. Sci. 24, 8836 (2023).

  • Bohórquez, D. V. et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Investig. 125, 782–786 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karra, E., Chandarana, K. & Batterham, R. L. The role of peptide YY in appetite regulation and obesity. J. Physiol. 587, 19–25 (2009).

  • Dockray, G. J. Cholecystokinin and gut-brain signalling. Regulatory Pept. 155, 6–10 (2009).

    Google Scholar 

  • Karra, E. & Batterham, R. L. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol. Cell. Endocrinol. 316, 120–128 (2010).

    PubMed 

    Google Scholar 

  • Kaunitz, J. D. & Akiba, Y. Control of intestinal epithelial proliferation and differentiation: the microbiome, enteroendocrine L cells, telocytes, enteric nerves, and GLP, too. Dig. Dis. Sci. 64, 2709–2716 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liddle, R. A. Neuropods. CMGH 7, 739–747 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Loh, Y. P., Xiao, L. & Park, J. J. Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis. Extracell. Vesicles Circulating Nucleic Acids 4, 568–587 (2023).

    Google Scholar 

  • Park, J. J. & Loh, Y. P. How peptide hormone vesicles are transported to the secretion site for exocytosis. Mol. Endocrinol. 22, 2583–2595 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bohórquez, D. V. et al. An enteroendocrine cell—Enteric glia connection revealed by 3D electron microscopy. PLoS ONE 9, e89881 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, M. et al. Enteric glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. Gastroenterology 153, 1068–1081.e7 (2017).

    PubMed 

    Google Scholar 

  • Santhosh, S., Zanoletti, L., Stamp, L. A., Hao, M. M. & Matteoli, G. From diversity to disease: unravelling the role of enteric glial cells. Front. Immunol. 15, 1408744 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Spencer, N. J. & Hu, H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 17, 338–351 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Timpka, J. & Odin, P. Gastrointestinal dysfunction in Parkinson’s disease. Int. Rev. Movement Disorders 1, 179–208 (2021).

  • Fine, R. E. In Receptors in the Evolution and Development of the Brain, pp. 183–191 (Elsevier, 2019). https://doi.org/10.1016/C2016-0-00013-X.

  • Waclawiková, B., Codutti, A., Alim, K. & El Aidy, S. Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes 14, 1997296 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Progatzky, F. & Pachnis, V. The role of enteric glia in intestinal immunity. Curr. Opin. Immunol. 77, 102183 (2022).

    PubMed 

    Google Scholar 

  • Seguella, L. & Gulbransen, B. D. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat. Rev. Gastroenterol. Hepatol. 18, 571–587 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Savidge, T. C., Sofroniew, M. V. & Neunlist, M. Starring roles for astroglia in barrier pathologies of gut and brain. Lab. Investig. 87, 731–736 (2007).

    PubMed 

    Google Scholar 

  • De Giorgio, R. et al. Enteric glia and neuroprotection: basic and clinical aspects. Am. J. Physiol. Gastro-intest Liver Physiol. 303, 887–893 (2012).

    Google Scholar 

  • Han, Y. et al. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J. Inflamm. Res. 15, 6213–6230 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Corp, E. S., McQuade, J., Moran, T. H. & Smith, G. P. Characterization of type A and type B CCK receptor binding sites in rat vagus nerve. Brain Res. 623, 161–166 (1993).

    PubMed 

    Google Scholar 

  • Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science 361, eaat5236 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • López-Ojeda, W. & Hurley, R. A. The vagus nerve and the brain-gut axis: implications for neuropsychiatric disorders. J. Neuropsychiatry Clin. Neurosci. 36, 278–282 (2024).

    PubMed 

    Google Scholar 

  • Breit, S., Kupferberg, A., Rogler, G. & Hasler, G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front. Psychiatry 9, 44 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bharwani, A., Mian, M. F., Surette, M. G., Bienenstock, J. & Forsythe, P. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Med. 15, 7 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA 108, 16050–16055 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt, K. et al. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl.) 232, 1793–1801 (2015).

    PubMed 

    Google Scholar 

  • Homan, P. et al. Serotonin versus catecholamine deficiency: behavioral and neural effects of experimental depletion in remitted depression. Transl. Psychiatry 5, e532 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, L. et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe 29, 179–196.e9 (2021).

    PubMed 

    Google Scholar 

  • Tian, P., Wang, G., Zhao, J., Zhang, H. & Chen, W. Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis. J. Nutritional Biochem. 66, 43–51 (2019).

    Google Scholar 

  • Woźniak, D., Cichy, W., Przysławski, J. & Drzymała-Czyż, S. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv. Med. Sci. 66, 284–292 (2021).

    PubMed 

    Google Scholar 

  • Prosapio, J. G., Sankar, P. & Jialal, I. Physiology, Gastrin (StatPearls Publishing, Treasure Island (FL), 2023).

  • Holst, J. J. The incretin system in healthy humans: the role of GIP and GLP-1. Metabolism 96, 46–55 (2019).

    PubMed 

    Google Scholar 

  • Martin, A. M., Sun, E. W., Rogers, G. B. & Keating, D. J. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front. Physiol. 10, 428 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomsen, C. et al. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am. J. Clin. Nutr. 69, 1135–1143 (1999).

    PubMed 

    Google Scholar 

  • Posovszky, C. & Wabitsch, M. Regulation of appetite, satiation, and body weight by enteroendocrine cells. Part 1: Characteristics of enteroendocrine cells and their capability of weight regulation. Horm. Res. Paediatrics 83, 1–10 (2015).

    Google Scholar 

  • Amato, A., Baldassano, S. & Mulè, F. GLP2: An underestimated signal for improving glycaemic control and insulin sensitivity. J. Endocrinol. 229, R57–R66 (2016).

    PubMed 

    Google Scholar 

  • Rakipovski, G. et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE −/− and LDLr −/− mice by a mechanism that includes inflammatory pathways. JACC Basic Transl. Sci. 3, 844–857 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Knudsen, L. B. & Lau, J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 10, 155 (2019).

    Google Scholar 

  • Burness, C. B. & McCormack, P. L. Teduglutide: a review of its use in the treatment of patients with short bowel syndrome. Drugs 73, 935–947 (2013).

    PubMed 

    Google Scholar 

  • Sabra, H. K. et al. Efficacy and safety of glucagon-like peptide 2 in patients with short bowel syndrome: a systematic review and network meta-analysis. J. Gastrointest. Surg. 28, 1194–1205 (2024).

    PubMed 

    Google Scholar 

  • Oertel, M. et al. GLP-1 and PYY for the treatment of obesity: a pilot study on the use of agonists and antagonists in diet-induced rats. Endocr. Connect 13, e230398 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guida, C. et al. PYY plays a key role in the resolution of diabetes following bariatric surgery in humans. EBioMedicine 40, 67–76 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerspach, A. C., Steinert, R. E., Schönenberger, L., Graber-Maier, A. & Beglinger, C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am. J. Physiol. Endocrinol. Metab. 301, 317–325 (2011).

    Google Scholar 

  • Brown, R. J., Walter, M. & Rother, K. I. Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion. Diabetes Care 32, 2184–2186 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, L. et al. High fat diet induces microbiota-dependent silencing of enteroendocrine cells. Elife 8, e48479 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohue-Kitano, R., Banno, Y., Masujima, Y. & Kimura, I. Gut microbial metabolites reveal diet-dependent metabolic changes induced by nicotine administration. Sci. Rep. 14, 1056 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Procházková, N. et al. Gut physiology and environment explain variations in human gut microbiome composition and metabolism. Nat. Microbiol 9, 3210–3225 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cani, P. D., Everard, A. & Duparc, T. Gut microbiota, enteroendocrine functions and metabolism. Curr. Opin. Pharmacol. 13, 935–940 (2013).

    PubMed 

    Google Scholar 

  • Arora, T., Vanslette, A. M., Hjorth, S. A. & Bäckhed, F. Microbial regulation of enteroendocrine cells. Med 2, 553–570 (2021).

    PubMed 

    Google Scholar 

  • Akiba, Y. et al. Short-chain fatty acid sensing in rat duodenum. J. Physiol. 593, 585–599 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nøhr, M. K. et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154, 3552–3564 (2013).

    PubMed 

    Google Scholar 

  • Samuel, B. S. et al. Effects of the Gut Microbiota on Host Adiposity Are Modulated by the Short-Chain Fatty-Acid Binding G Protein-Coupled Receptor, Gpr41. www.pnas.org/cgi/content/full/ (2008).

  • Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J. Obes. 39, 424–429 (2015).

    Google Scholar 

  • Torres-Fuentes, C. et al. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J. 33, 13546–13559 (2019).

    PubMed 

    Google Scholar 

  • Chimerel, C. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 9, 1202–1208 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gautier, T. et al. Roseburia intestinalis modulates PYY expression in a new a multicellular model including enteroendocrine cells. Microorganisms 10, 2263 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Porter, N. T., Luis, A. S. & Martens, E. C. Bacteroides thetaiotaomicron. Trends Microbiol. 26, 966–967 (2018).

    PubMed 

    Google Scholar 

  • Modasia, A. et al. Regulation of enteroendocrine cell networks by the major human gut symbiont bacteroides thetaiotaomicron. Front Microbiol 11, 575595 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • LeValley, S. L., Tomaro-Duchesneau, C. & Britton, R. A. Degradation of the incretin hormone glucagon-like peptide-1 (GLP-1) by enterococcus faecalis metalloprotease GelE. mSphere 5, e00585–19 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Steck, N. et al. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology 141, 959–971 (2011).

    PubMed 

    Google Scholar 

  • Maharshak, N. et al. Enterococcus faecalis gelatinase mediates intestinal permeability via protease-activated receptor 2. Infect. Immun. 83, 2762–2770 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ottman, N., Geerlings, S. Y., Aalvink, S., de Vos, W. M. & Belzer, C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best. Pract. Res.: Clin. Gastroenterol. 31, 637–642 (2017).

    PubMed 

    Google Scholar 

  • Yoon, H. S. et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 6, 563–573 (2021).

    PubMed 

    Google Scholar 

  • Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, E. J. et al. High levels of akkermansia muciniphilia growth associated with spring water ingestion prevents obesity and hyperglycemia in a high-fat diet-induced mouse model. Nat. Prod. Commun. 17 (2022).

  • Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Louis, S., Tappu, R. M., Damms-Machado, A., Huson, D. H. & Bischoff, S. C. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS ONE 11, e0149564 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mack, I. et al. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci. Rep. 6, 26742 (2016).

    Google Scholar 

  • Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chatzipanagiotou, O. et al. All you need to know about gastrinoma today|Gastrinoma and Zollinger-Ellison syndrome: a thorough update. J. Neuroendocrinol. 35, e13267 (2023).

  • George, J., Ramage, J., White, B. & Srirajaskanthan, R. The role of serotonin inhibition within the treatment of carcinoid syndrome. Endocrine Oncol. 3, e220077 (2023).

  • Yu, Y., Yang, W., Li, Y. & Cong, Y. Enteroendocrine cells: sensing gut microbiota and regulating inflammatory bowel diseases. Inflamm. Bowel Dis. 26, 11–20 (2020).

    PubMed 

    Google Scholar 

  • Moran, G. W., Pennock, J. & McLaughlin, J. T. Enteroendocrine cells in terminal ileal Crohn’s disease. J. Crohns Colitis 6, 871–880 (2012).

    PubMed 

    Google Scholar 

  • El-Salhy, M., Danielsson, Å., Stenling, R. & Grimelius, L. Colonic endocrine cells in inflammatory bowel disease. J. Intern. Med. 242, 413–419 (1997).

    PubMed 

    Google Scholar 

  • Selleri, S. et al. Induction of pro-inflammatory programs in enteroendocrine cells by the Toll-like receptor agonists flagellin and bacterial LPS. Int. Immunol. 20, 961–970 (2008).

    PubMed 

    Google Scholar 

  • Dinarello, C. A. & Kim, S.-H. IL-32, a novel cytokine with a possible role in disease. Ann. Rheum. Dis. 65, iii61 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tao, E. et al. Potential roles of enterochromaffin cells in early life stress-induced irritable bowel syndrome. Front. Cell. Neurosci. 16, 837166 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chow, C. F. W. et al. From psychology to physicality: how nerve growth factor transduces early life stress into gastrointestinal motility disorders later in life. Cell Cycle 18, 1824–1829 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, H. L. X. et al. Early life stress disrupts intestinal homeostasis via NGF-TrkA signaling. Nat. Commun. 10, 1745 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Heymsfield, S. B. & Wadden, T. A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376, 254–266 (2017).

    PubMed 

    Google Scholar 

  • WHO. Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2024).

  • Jeffery, R. W. & Harnack, L. J. Evidence implicating eating as a primary driver for the obesity epidemic. Diabetes 56, 2673–2676 (2007).

    PubMed 

    Google Scholar 

  • Vandevijvere, S., Chow, C. C., Hall, K. D., Umali, E. & Swinburn, B. A. Increased food energy supply as a major driver of the obesity epidemic: a global analysis. Bull. World Health Organ 93, 446–456 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, S., Gastaldelli, A., Yki-Järvinen, H. & Scherer, P. E. Why does obesity cause diabetes? Cell Metab. 34, 11–20 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinert, R. E. et al. Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev. 97, 411–463 (2017).

    PubMed 

    Google Scholar 

  • Marzullo, P. et al. The relationship between active ghrelin levels and human obesity involves alterations in resting energy expenditure. J. Clin. Endocrinol. Metab. 89, 936–939 (2004).

    PubMed 

    Google Scholar 

  • English, P. J., Ghatei, M. A., Malik, I. A., Bloom, S. R. & Wilding, J. P. H. Food fails to suppress ghrelin levels in obese humans. J. Clin. Endocrinol. Metab. 87, 2984–2987 (2002).

    PubMed 

    Google Scholar 

  • Cummings, D. E. et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346, 1623–1630 (2002).

    PubMed 

    Google Scholar 

  • De Krom, M. et al. Common genetic variations in CCK, leptin, and leptin receptor genes are associated with specific human eating patterns. Diabetes 56, 276–280 (2007).

    PubMed 

    Google Scholar 

  • Marchal-Victorion, S. et al. Genetic, pharmacological and functional analysis of cholecystokinin-1 and cholecystokinin-2 receptor polymorphism in type 2 diabetes and obese patients. Pharmacogenetics 12, 23–30 (2002).

    PubMed 

    Google Scholar 

  • Rushakoff, R. A. et al. Reduced postprandial cholecystokinin (CCK) secretion in patients with noninsulin-dependent diabetes mellitus: evidence for a role for CCK in regulating postprandial hyperglycemia. J. Clin. Endocrinol. Metab. 76, 489–493 (1993).

    PubMed 

    Google Scholar 

  • Bucceri, A. M., Calogero, A. E. & Brogna, A. Gallbladder and gastric emptying: relationship to cholecystokininemia in diabetics. Eur. J. Intern. Med. 13, 123–128 (2002).

  • Calanna, S. et al. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: Systematic review and meta-analyses of clinical studies. Diabetologia 56, 965–972 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Collins, L. & Costello, R. A. Glucagon-like peptide-1 receptor agonists. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK551568/ (2024).

  • Unger, J. & Parkin, C. G. Type 2 diabetes: an expanded view of pathophysiology and therapy. Postgrad. Med. 122, 145–157 (2010).

    PubMed 

    Google Scholar 

  • Aranias, T. et al. Lipid-rich diet enhances L-cell density in obese subjects and in mice through improved L-cell differentiation. J. Nutr. Sci. 4, e22 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Osinski, C. et al. Type 2 diabetes is associated with impaired jejunal enteroendocrine GLP-1 cell lineage in human obesity. Int J. Obes. 45, 170–183 (2021).

    Google Scholar 

  • Uellendahl-Werth, F. et al. Cross-tissue transcriptome-wide association studies identify susceptibility genes shared between schizophrenia and inflammatory bowel disease. Commun. Biol. 5, 80 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, L. & Li, Y. Involvement of intestinal enteroendocrine cells in neurological and psychiatric disorders. Biomedicines 10, 2577 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, Y., Sun, I. W., Liu, S. I., Loh, E. W. & Lin, Y. C. Tacrolimus ointment-induced relapse of schizophrenia: a case report. Int. J. Neuropsychopharmacol. 10, 851–854 (2007).

    PubMed 

    Google Scholar 

  • Angot, E. & Brundin, P. Dissecting the potential molecular mechanisms underlying α-synuclein cell-to-cell transfer in Parkinson’s disease. Parkinsonism Relat. Disord. 15, S143–S147 (2009).

    PubMed 

    Google Scholar 

  • Chandra, R., Hiniker, A., Kuo, Y. M., Nussbaum, R. L. & Liddle, R. A. α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2, e92295 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Amorim Neto, D. P. et al. Akkermansia muciniphila induces mitochondrial calcium overload and α-synuclein aggregation in an enteroendocrine cell line. iScience 25, 103908 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chandra, R. et al. Gut mucosal cells transfer α-synuclein to the vagus nerve. JCI Insight 8, e172192 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gustafsson, G. et al. Secretion and uptake of α-synuclein via extracellular vesicles in cultured cells. Cell Mol. Neurobiol. 38, 1539–1550 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, Y. X. et al. Lysosomal exocytosis releases pathogenic α-synuclein species from neurons in synucleinopathy models. Nat. Commun. 13, 4918 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, H. J., Patel, S. & Lee, S. J. Intravesicular localization and exocytosis of α-synuclein and its aggregates. J. Neurosci. 25, 6016–6024 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Emmanouilidou, E. & Vekrellis, K. Exocytosis and spreading of normal and aberrant α-synuclein. Brain Pathol. 26, 398–403 (2016).

  • Abounit, S. et al. Tunneling nanotubes spread fibrillar α‐synuclein by intercellular trafficking of lysosomes. EMBO J. 35, 2120–2138 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dieriks, B. V. et al. α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson’s disease patients. Sci. Rep. 7, 42984 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rostami, J. et al. Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J. Neurosci. 37, 11835–11853 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheiblich, H. et al. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell 184, 5089–5106.e21 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Athauda, D. & Foltynie, T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov. Today 21, 802–818 (2016).

    PubMed 

    Google Scholar 

  • Manfready, R. A. et al. Attenuated postprandial GLP-1 response in Parkinson’s disease. Front. Neurosci. 15, 660942 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Meissner, W. G. et al. Trial of Lixisenatide in early Parkinson’s disease. N. Engl. J. Med. 390, 1176–1185 (2024).

    PubMed 

    Google Scholar 

  • Aviles-Olmos, I. et al. Exenatide and the treatment of patients with Parkinson’s disease. J. Clin. Investig. 123, 2730–2736 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Athauda, D. et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 390, 1664–1675 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McGarry, A. et al. Safety, Tolerability, and Efficacy of NLY01 in Early Untreated Parkinson’s Disease: A Randomised, Double-Blind, Placebo-Controlled Trial. Articles Lancet Neurol 23 www.thelancet.com/neurology (2024).

  • Kalinderi, K., Papaliagkas, V. & Fidani, L. GLP-1 receptor agonists: a new treatment in Parkinson’s disease. Int. J. Mol. Sci. 25, 3812 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, H. M. et al. Peptide YY is critical for acylethanolamine receptor Gpr119-induced activation of gastrointestinal mucosal responses. Cell Metab. 11, 532–542 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldspink, D. A., Reimann, F. & Gribble, F. M. Models and tools for studying enteroendocrine cells. Endocrinology 159, 3874–3884 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Habib, A. M. et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153, 3054–3065 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Verhoeckx, K. et al. The impact of food bioactives on health: In Vitro and Ex Vivo Models [Internet]. Cham (CH): Springer; 2015. https://doi.org/10.1007/978-3-319-16104-4.

  • Kuhre, R. E. et al. Peptide production and secretion in GLUTag, NCI-H716, and STC-1 cells: A comparison to native L-cells. J. Mol. Endocrinol. 56, 201–211 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez-Silgado, A. et al. Differentiation and CRISPR-Cas9-mediated genetic engineering of human intestinal organoids. STAR Protoc. 3, 101639 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    PubMed 

    Google Scholar 

  • Clarke, L. L. A guide to ussing chamber studies of mouse intestine Clarke LL. A guide to Ussing chamber studies of mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 296, 1151–1166 (2009).

    Google Scholar 

  • Westerhout, J. et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur. J. Pharm. Sci. 63, 167–177 (2014).

    PubMed 

    Google Scholar 

  • Hayashi, M. et al. Enteroendocrine cell lineages that differentially control feeding and gut motility. Elife 12, e78512 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mellitzer, G. et al. Loss of enteroendocrine cells in mice alters lipid absorption and glucose homeostasis and impairs postnatal survival. J. Clin. Investig. 120, 1708–1721 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wallace, K. N., Akhter, S., Smith, E. M., Lorent, K. & Pack, M. Intestinal growth and differentiation in zebrafish. Mech. Dev. 122, 157–173 (2005).

    PubMed 

    Google Scholar 

  • Kuil, L. E., Chauhan, R. K., Cheng, W. W., Hofstra, R. M. W. & Alves, M. M. Zebrafish: A Model Organism for Studying Enteric Nervous System Development and Disease. Front. Cell Dev. Biol. 8, 629073 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, J. et al. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat. Commun. 15, 3514 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, X., Lv, J. & Xi, R. The specification and function of enteroendocrine cells in Drosophila and mammals: a comparative review. FEBS J. 289, 4773–4796 (2022).

    PubMed 

    Google Scholar 

  • Xia, Q. et al. PARP-1 inhibition rescues short lifespan in hyperglycemic C. elegans and improves GLP-1 secretion in human cells. Aging Dis. 9, 17–30 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gadgaard, S. et al. Long-acting agonists of human and rodent GLP-2 receptors for studies of the physiology and pharmacological potential of the GLP-2 system. Biomed. Pharmacother. 160, 114383 (2023).

    PubMed 

    Google Scholar 

  • Reiner, J. et al. Dapiglutide, a novel dual GLP-1 and GLP-2 receptor agonist, attenuates intestinal insufficiency in a murine model of short bowel. J. Parenter. Enter. Nutr. 46, 1107–1118 (2022).

    Google Scholar 

  • Cho, W., Kim, S. & Park, Y. G. Towards multiplexed immunofluorescence of 3D tissues. Mol. Brain 16, 37 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Diefenbach, A., Gnafakis, S. & Shomrat, O. Innate lymphoid cell-epithelial cell modules sustain intestinal homeostasis. Immunity 52, 452–463 (2020).

    PubMed 

    Google Scholar 

  • Beumer, J. et al. Mapping prohormone processing by proteases in human enteroendocrine cells using genetically engineered organoid models. Proc. Natl Acad. Sci .USA 119, e2212057119 (2022).

  • Afroze, S. et al. The physiological roles of secretin and its receptor. Ann. Transl. Med 1, 29 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Markovic, M. A. & Brubaker, P. L. The roles of glucagon-like peptide-2 and the intestinal epithelial insulin-like growth factor-1 receptor in regulating microvillus length. Sci. Rep. 9 (2019).

  • Cekic, C. et al. Evaluation of the relationship between serum ghrelin, C-reactive protein and interleukin-6 levels, and disease activity in inflammatory bowel diseases. Hepatogastroenterology 61, 1196–1200 (2014).

    PubMed 

    Google Scholar 

  • Epelboym, I. & Mazeh, H. Zollinger-Ellison syndrome: classical considerations and current controversies. Oncologist 19, 44–50 (2014).

    PubMed 

    Google Scholar 

  • Modlin, I. M., Lye, K. D. & Kidd, M. Carcinoid tumors of the stomach. Surg. Oncol. 12, 153–172 (2003).

    PubMed 

    Google Scholar 

  • Continue Reading