Carabotti, M., Scirocco, A., Antonietta Maselli, M. & Severi, C. The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems 28 www.annalsgastro.gr (2015).
Worthington, J. J., Reimann, F. & Gribble, F. M. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol. 11, 3–20 (2018).
Google Scholar
Latorre, R., Sternini, C., De Giorgio, R. & Greenwood-Van Meerveld, B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol. Motil. 28, 620–630 (2016).
Google Scholar
Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).
Google Scholar
Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).
Google Scholar
Zeve, D. et al. Robust differentiation of human enteroendocrine cells from intestinal stem cells. Nat. Commun. 13, 261 (2022).
Google Scholar
Atanga, R., Singh, V. & In, J. G. Intestinal enteroendocrine cells: present and future druggable targets. Int. J. Mol. Sci. 24, 8836 (2023).
Bohórquez, D. V. et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Investig. 125, 782–786 (2015).
Google Scholar
Karra, E., Chandarana, K. & Batterham, R. L. The role of peptide YY in appetite regulation and obesity. J. Physiol. 587, 19–25 (2009).
Dockray, G. J. Cholecystokinin and gut-brain signalling. Regulatory Pept. 155, 6–10 (2009).
Karra, E. & Batterham, R. L. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol. Cell. Endocrinol. 316, 120–128 (2010).
Google Scholar
Kaunitz, J. D. & Akiba, Y. Control of intestinal epithelial proliferation and differentiation: the microbiome, enteroendocrine L cells, telocytes, enteric nerves, and GLP, too. Dig. Dis. Sci. 64, 2709–2716 (2019).
Google Scholar
Liddle, R. A. Neuropods. CMGH 7, 739–747 (2019).
Google Scholar
Loh, Y. P., Xiao, L. & Park, J. J. Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis. Extracell. Vesicles Circulating Nucleic Acids 4, 568–587 (2023).
Park, J. J. & Loh, Y. P. How peptide hormone vesicles are transported to the secretion site for exocytosis. Mol. Endocrinol. 22, 2583–2595 (2008).
Google Scholar
Bohórquez, D. V. et al. An enteroendocrine cell—Enteric glia connection revealed by 3D electron microscopy. PLoS ONE 9, e89881 (2014).
Google Scholar
Rao, M. et al. Enteric glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. Gastroenterology 153, 1068–1081.e7 (2017).
Google Scholar
Santhosh, S., Zanoletti, L., Stamp, L. A., Hao, M. M. & Matteoli, G. From diversity to disease: unravelling the role of enteric glial cells. Front. Immunol. 15, 1408744 (2024).
Google Scholar
Spencer, N. J. & Hu, H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 17, 338–351 (2020).
Google Scholar
Timpka, J. & Odin, P. Gastrointestinal dysfunction in Parkinson’s disease. Int. Rev. Movement Disorders 1, 179–208 (2021).
Fine, R. E. In Receptors in the Evolution and Development of the Brain, pp. 183–191 (Elsevier, 2019). https://doi.org/10.1016/C2016-0-00013-X.
Waclawiková, B., Codutti, A., Alim, K. & El Aidy, S. Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes 14, 1997296 (2022).
Google Scholar
Progatzky, F. & Pachnis, V. The role of enteric glia in intestinal immunity. Curr. Opin. Immunol. 77, 102183 (2022).
Google Scholar
Seguella, L. & Gulbransen, B. D. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat. Rev. Gastroenterol. Hepatol. 18, 571–587 (2021).
Google Scholar
Savidge, T. C., Sofroniew, M. V. & Neunlist, M. Starring roles for astroglia in barrier pathologies of gut and brain. Lab. Investig. 87, 731–736 (2007).
Google Scholar
De Giorgio, R. et al. Enteric glia and neuroprotection: basic and clinical aspects. Am. J. Physiol. Gastro-intest Liver Physiol. 303, 887–893 (2012).
Han, Y. et al. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J. Inflamm. Res. 15, 6213–6230 (2022).
Google Scholar
Corp, E. S., McQuade, J., Moran, T. H. & Smith, G. P. Characterization of type A and type B CCK receptor binding sites in rat vagus nerve. Brain Res. 623, 161–166 (1993).
Google Scholar
Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science 361, eaat5236 (2018).
Google Scholar
López-Ojeda, W. & Hurley, R. A. The vagus nerve and the brain-gut axis: implications for neuropsychiatric disorders. J. Neuropsychiatry Clin. Neurosci. 36, 278–282 (2024).
Google Scholar
Breit, S., Kupferberg, A., Rogler, G. & Hasler, G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front. Psychiatry 9, 44 (2018).
Google Scholar
Bharwani, A., Mian, M. F., Surette, M. G., Bienenstock, J. & Forsythe, P. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Med. 15, 7 (2017).
Google Scholar
Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA 108, 16050–16055 (2011).
Google Scholar
Schmidt, K. et al. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl.) 232, 1793–1801 (2015).
Google Scholar
Homan, P. et al. Serotonin versus catecholamine deficiency: behavioral and neural effects of experimental depletion in remitted depression. Transl. Psychiatry 5, e532 (2015).
Google Scholar
Ye, L. et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe 29, 179–196.e9 (2021).
Google Scholar
Tian, P., Wang, G., Zhao, J., Zhang, H. & Chen, W. Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis. J. Nutritional Biochem. 66, 43–51 (2019).
Woźniak, D., Cichy, W., Przysławski, J. & Drzymała-Czyż, S. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv. Med. Sci. 66, 284–292 (2021).
Google Scholar
Prosapio, J. G., Sankar, P. & Jialal, I. Physiology, Gastrin (StatPearls Publishing, Treasure Island (FL), 2023).
Holst, J. J. The incretin system in healthy humans: the role of GIP and GLP-1. Metabolism 96, 46–55 (2019).
Google Scholar
Martin, A. M., Sun, E. W., Rogers, G. B. & Keating, D. J. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front. Physiol. 10, 428 (2019).
Google Scholar
Thomsen, C. et al. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am. J. Clin. Nutr. 69, 1135–1143 (1999).
Google Scholar
Posovszky, C. & Wabitsch, M. Regulation of appetite, satiation, and body weight by enteroendocrine cells. Part 1: Characteristics of enteroendocrine cells and their capability of weight regulation. Horm. Res. Paediatrics 83, 1–10 (2015).
Amato, A., Baldassano, S. & Mulè, F. GLP2: An underestimated signal for improving glycaemic control and insulin sensitivity. J. Endocrinol. 229, R57–R66 (2016).
Google Scholar
Rakipovski, G. et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE −/− and LDLr −/− mice by a mechanism that includes inflammatory pathways. JACC Basic Transl. Sci. 3, 844–857 (2018).
Google Scholar
Knudsen, L. B. & Lau, J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 10, 155 (2019).
Burness, C. B. & McCormack, P. L. Teduglutide: a review of its use in the treatment of patients with short bowel syndrome. Drugs 73, 935–947 (2013).
Google Scholar
Sabra, H. K. et al. Efficacy and safety of glucagon-like peptide 2 in patients with short bowel syndrome: a systematic review and network meta-analysis. J. Gastrointest. Surg. 28, 1194–1205 (2024).
Google Scholar
Oertel, M. et al. GLP-1 and PYY for the treatment of obesity: a pilot study on the use of agonists and antagonists in diet-induced rats. Endocr. Connect 13, e230398 (2024).
Google Scholar
Guida, C. et al. PYY plays a key role in the resolution of diabetes following bariatric surgery in humans. EBioMedicine 40, 67–76 (2019).
Google Scholar
Gerspach, A. C., Steinert, R. E., Schönenberger, L., Graber-Maier, A. & Beglinger, C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am. J. Physiol. Endocrinol. Metab. 301, 317–325 (2011).
Brown, R. J., Walter, M. & Rother, K. I. Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion. Diabetes Care 32, 2184–2186 (2009).
Google Scholar
Ye, L. et al. High fat diet induces microbiota-dependent silencing of enteroendocrine cells. Elife 8, e48479 (2019).
Google Scholar
Ohue-Kitano, R., Banno, Y., Masujima, Y. & Kimura, I. Gut microbial metabolites reveal diet-dependent metabolic changes induced by nicotine administration. Sci. Rep. 14, 1056 (2024).
Google Scholar
Procházková, N. et al. Gut physiology and environment explain variations in human gut microbiome composition and metabolism. Nat. Microbiol 9, 3210–3225 (2024).
Google Scholar
Cani, P. D., Everard, A. & Duparc, T. Gut microbiota, enteroendocrine functions and metabolism. Curr. Opin. Pharmacol. 13, 935–940 (2013).
Google Scholar
Arora, T., Vanslette, A. M., Hjorth, S. A. & Bäckhed, F. Microbial regulation of enteroendocrine cells. Med 2, 553–570 (2021).
Google Scholar
Akiba, Y. et al. Short-chain fatty acid sensing in rat duodenum. J. Physiol. 593, 585–599 (2015).
Google Scholar
Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).
Google Scholar
Nøhr, M. K. et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154, 3552–3564 (2013).
Google Scholar
Samuel, B. S. et al. Effects of the Gut Microbiota on Host Adiposity Are Modulated by the Short-Chain Fatty-Acid Binding G Protein-Coupled Receptor, Gpr41. www.pnas.org/cgi/content/full/ (2008).
Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J. Obes. 39, 424–429 (2015).
Torres-Fuentes, C. et al. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J. 33, 13546–13559 (2019).
Google Scholar
Chimerel, C. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 9, 1202–1208 (2014).
Google Scholar
Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).
Google Scholar
Gautier, T. et al. Roseburia intestinalis modulates PYY expression in a new a multicellular model including enteroendocrine cells. Microorganisms 10, 2263 (2022).
Google Scholar
Porter, N. T., Luis, A. S. & Martens, E. C. Bacteroides thetaiotaomicron. Trends Microbiol. 26, 966–967 (2018).
Google Scholar
Modasia, A. et al. Regulation of enteroendocrine cell networks by the major human gut symbiont bacteroides thetaiotaomicron. Front Microbiol 11, 575595 (2020).
Google Scholar
LeValley, S. L., Tomaro-Duchesneau, C. & Britton, R. A. Degradation of the incretin hormone glucagon-like peptide-1 (GLP-1) by enterococcus faecalis metalloprotease GelE. mSphere 5, e00585–19 (2020).
Google Scholar
Steck, N. et al. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology 141, 959–971 (2011).
Google Scholar
Maharshak, N. et al. Enterococcus faecalis gelatinase mediates intestinal permeability via protease-activated receptor 2. Infect. Immun. 83, 2762–2770 (2015).
Google Scholar
Ottman, N., Geerlings, S. Y., Aalvink, S., de Vos, W. M. & Belzer, C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best. Pract. Res.: Clin. Gastroenterol. 31, 637–642 (2017).
Google Scholar
Yoon, H. S. et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 6, 563–573 (2021).
Google Scholar
Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).
Google Scholar
Kim, E. J. et al. High levels of akkermansia muciniphilia growth associated with spring water ingestion prevents obesity and hyperglycemia in a high-fat diet-induced mouse model. Nat. Prod. Commun. 17 (2022).
Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).
Google Scholar
Louis, S., Tappu, R. M., Damms-Machado, A., Huson, D. H. & Bischoff, S. C. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS ONE 11, e0149564 (2016).
Google Scholar
Mack, I. et al. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci. Rep. 6, 26742 (2016).
Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).
Google Scholar
Chatzipanagiotou, O. et al. All you need to know about gastrinoma today|Gastrinoma and Zollinger-Ellison syndrome: a thorough update. J. Neuroendocrinol. 35, e13267 (2023).
George, J., Ramage, J., White, B. & Srirajaskanthan, R. The role of serotonin inhibition within the treatment of carcinoid syndrome. Endocrine Oncol. 3, e220077 (2023).
Yu, Y., Yang, W., Li, Y. & Cong, Y. Enteroendocrine cells: sensing gut microbiota and regulating inflammatory bowel diseases. Inflamm. Bowel Dis. 26, 11–20 (2020).
Google Scholar
Moran, G. W., Pennock, J. & McLaughlin, J. T. Enteroendocrine cells in terminal ileal Crohn’s disease. J. Crohns Colitis 6, 871–880 (2012).
Google Scholar
El-Salhy, M., Danielsson, Å., Stenling, R. & Grimelius, L. Colonic endocrine cells in inflammatory bowel disease. J. Intern. Med. 242, 413–419 (1997).
Google Scholar
Selleri, S. et al. Induction of pro-inflammatory programs in enteroendocrine cells by the Toll-like receptor agonists flagellin and bacterial LPS. Int. Immunol. 20, 961–970 (2008).
Google Scholar
Dinarello, C. A. & Kim, S.-H. IL-32, a novel cytokine with a possible role in disease. Ann. Rheum. Dis. 65, iii61 (2006).
Google Scholar
Tao, E. et al. Potential roles of enterochromaffin cells in early life stress-induced irritable bowel syndrome. Front. Cell. Neurosci. 16, 837166 (2022).
Google Scholar
Chow, C. F. W. et al. From psychology to physicality: how nerve growth factor transduces early life stress into gastrointestinal motility disorders later in life. Cell Cycle 18, 1824–1829 (2019).
Google Scholar
Wong, H. L. X. et al. Early life stress disrupts intestinal homeostasis via NGF-TrkA signaling. Nat. Commun. 10, 1745 (2019).
Google Scholar
Heymsfield, S. B. & Wadden, T. A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376, 254–266 (2017).
Google Scholar
WHO. Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2024).
Jeffery, R. W. & Harnack, L. J. Evidence implicating eating as a primary driver for the obesity epidemic. Diabetes 56, 2673–2676 (2007).
Google Scholar
Vandevijvere, S., Chow, C. C., Hall, K. D., Umali, E. & Swinburn, B. A. Increased food energy supply as a major driver of the obesity epidemic: a global analysis. Bull. World Health Organ 93, 446–456 (2015).
Google Scholar
Klein, S., Gastaldelli, A., Yki-Järvinen, H. & Scherer, P. E. Why does obesity cause diabetes? Cell Metab. 34, 11–20 (2022).
Google Scholar
Steinert, R. E. et al. Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev. 97, 411–463 (2017).
Google Scholar
Marzullo, P. et al. The relationship between active ghrelin levels and human obesity involves alterations in resting energy expenditure. J. Clin. Endocrinol. Metab. 89, 936–939 (2004).
Google Scholar
English, P. J., Ghatei, M. A., Malik, I. A., Bloom, S. R. & Wilding, J. P. H. Food fails to suppress ghrelin levels in obese humans. J. Clin. Endocrinol. Metab. 87, 2984–2987 (2002).
Google Scholar
Cummings, D. E. et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346, 1623–1630 (2002).
Google Scholar
De Krom, M. et al. Common genetic variations in CCK, leptin, and leptin receptor genes are associated with specific human eating patterns. Diabetes 56, 276–280 (2007).
Google Scholar
Marchal-Victorion, S. et al. Genetic, pharmacological and functional analysis of cholecystokinin-1 and cholecystokinin-2 receptor polymorphism in type 2 diabetes and obese patients. Pharmacogenetics 12, 23–30 (2002).
Google Scholar
Rushakoff, R. A. et al. Reduced postprandial cholecystokinin (CCK) secretion in patients with noninsulin-dependent diabetes mellitus: evidence for a role for CCK in regulating postprandial hyperglycemia. J. Clin. Endocrinol. Metab. 76, 489–493 (1993).
Google Scholar
Bucceri, A. M., Calogero, A. E. & Brogna, A. Gallbladder and gastric emptying: relationship to cholecystokininemia in diabetics. Eur. J. Intern. Med. 13, 123–128 (2002).
Calanna, S. et al. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: Systematic review and meta-analyses of clinical studies. Diabetologia 56, 965–972 (2013).
Google Scholar
Collins, L. & Costello, R. A. Glucagon-like peptide-1 receptor agonists. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK551568/ (2024).
Unger, J. & Parkin, C. G. Type 2 diabetes: an expanded view of pathophysiology and therapy. Postgrad. Med. 122, 145–157 (2010).
Google Scholar
Aranias, T. et al. Lipid-rich diet enhances L-cell density in obese subjects and in mice through improved L-cell differentiation. J. Nutr. Sci. 4, e22 (2015).
Google Scholar
Osinski, C. et al. Type 2 diabetes is associated with impaired jejunal enteroendocrine GLP-1 cell lineage in human obesity. Int J. Obes. 45, 170–183 (2021).
Uellendahl-Werth, F. et al. Cross-tissue transcriptome-wide association studies identify susceptibility genes shared between schizophrenia and inflammatory bowel disease. Commun. Biol. 5, 80 (2022).
Google Scholar
Yu, L. & Li, Y. Involvement of intestinal enteroendocrine cells in neurological and psychiatric disorders. Biomedicines 10, 2577 (2022).
Google Scholar
Lin, Y., Sun, I. W., Liu, S. I., Loh, E. W. & Lin, Y. C. Tacrolimus ointment-induced relapse of schizophrenia: a case report. Int. J. Neuropsychopharmacol. 10, 851–854 (2007).
Google Scholar
Angot, E. & Brundin, P. Dissecting the potential molecular mechanisms underlying α-synuclein cell-to-cell transfer in Parkinson’s disease. Parkinsonism Relat. Disord. 15, S143–S147 (2009).
Google Scholar
Chandra, R., Hiniker, A., Kuo, Y. M., Nussbaum, R. L. & Liddle, R. A. α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2, e92295 (2017).
Google Scholar
Amorim Neto, D. P. et al. Akkermansia muciniphila induces mitochondrial calcium overload and α-synuclein aggregation in an enteroendocrine cell line. iScience 25, 103908 (2022).
Google Scholar
Chandra, R. et al. Gut mucosal cells transfer α-synuclein to the vagus nerve. JCI Insight 8, e172192 (2023).
Google Scholar
Gustafsson, G. et al. Secretion and uptake of α-synuclein via extracellular vesicles in cultured cells. Cell Mol. Neurobiol. 38, 1539–1550 (2018).
Google Scholar
Xie, Y. X. et al. Lysosomal exocytosis releases pathogenic α-synuclein species from neurons in synucleinopathy models. Nat. Commun. 13, 4918 (2022).
Google Scholar
Lee, H. J., Patel, S. & Lee, S. J. Intravesicular localization and exocytosis of α-synuclein and its aggregates. J. Neurosci. 25, 6016–6024 (2005).
Google Scholar
Emmanouilidou, E. & Vekrellis, K. Exocytosis and spreading of normal and aberrant α-synuclein. Brain Pathol. 26, 398–403 (2016).
Abounit, S. et al. Tunneling nanotubes spread fibrillar α‐synuclein by intercellular trafficking of lysosomes. EMBO J. 35, 2120–2138 (2016).
Google Scholar
Dieriks, B. V. et al. α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson’s disease patients. Sci. Rep. 7, 42984 (2017).
Google Scholar
Rostami, J. et al. Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J. Neurosci. 37, 11835–11853 (2017).
Google Scholar
Scheiblich, H. et al. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell 184, 5089–5106.e21 (2021).
Google Scholar
Athauda, D. & Foltynie, T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov. Today 21, 802–818 (2016).
Google Scholar
Manfready, R. A. et al. Attenuated postprandial GLP-1 response in Parkinson’s disease. Front. Neurosci. 15, 660942 (2021).
Google Scholar
Meissner, W. G. et al. Trial of Lixisenatide in early Parkinson’s disease. N. Engl. J. Med. 390, 1176–1185 (2024).
Google Scholar
Aviles-Olmos, I. et al. Exenatide and the treatment of patients with Parkinson’s disease. J. Clin. Investig. 123, 2730–2736 (2013).
Google Scholar
Athauda, D. et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 390, 1664–1675 (2017).
Google Scholar
McGarry, A. et al. Safety, Tolerability, and Efficacy of NLY01 in Early Untreated Parkinson’s Disease: A Randomised, Double-Blind, Placebo-Controlled Trial. Articles Lancet Neurol 23 www.thelancet.com/neurology (2024).
Kalinderi, K., Papaliagkas, V. & Fidani, L. GLP-1 receptor agonists: a new treatment in Parkinson’s disease. Int. J. Mol. Sci. 25, 3812 (2024).
Google Scholar
Cox, H. M. et al. Peptide YY is critical for acylethanolamine receptor Gpr119-induced activation of gastrointestinal mucosal responses. Cell Metab. 11, 532–542 (2010).
Google Scholar
Goldspink, D. A., Reimann, F. & Gribble, F. M. Models and tools for studying enteroendocrine cells. Endocrinology 159, 3874–3884 (2018).
Google Scholar
Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).
Google Scholar
Habib, A. M. et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153, 3054–3065 (2012).
Google Scholar
Verhoeckx, K. et al. The impact of food bioactives on health: In Vitro and Ex Vivo Models [Internet]. Cham (CH): Springer; 2015. https://doi.org/10.1007/978-3-319-16104-4.
Kuhre, R. E. et al. Peptide production and secretion in GLUTag, NCI-H716, and STC-1 cells: A comparison to native L-cells. J. Mol. Endocrinol. 56, 201–211 (2016).
Google Scholar
Martinez-Silgado, A. et al. Differentiation and CRISPR-Cas9-mediated genetic engineering of human intestinal organoids. STAR Protoc. 3, 101639 (2022).
Google Scholar
Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).
Google Scholar
Clarke, L. L. A guide to ussing chamber studies of mouse intestine Clarke LL. A guide to Ussing chamber studies of mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 296, 1151–1166 (2009).
Westerhout, J. et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur. J. Pharm. Sci. 63, 167–177 (2014).
Google Scholar
Hayashi, M. et al. Enteroendocrine cell lineages that differentially control feeding and gut motility. Elife 12, e78512 (2023).
Google Scholar
Mellitzer, G. et al. Loss of enteroendocrine cells in mice alters lipid absorption and glucose homeostasis and impairs postnatal survival. J. Clin. Investig. 120, 1708–1721 (2010).
Google Scholar
Wallace, K. N., Akhter, S., Smith, E. M., Lorent, K. & Pack, M. Intestinal growth and differentiation in zebrafish. Mech. Dev. 122, 157–173 (2005).
Google Scholar
Kuil, L. E., Chauhan, R. K., Cheng, W. W., Hofstra, R. M. W. & Alves, M. M. Zebrafish: A Model Organism for Studying Enteric Nervous System Development and Disease. Front. Cell Dev. Biol. 8, 629073 (2021).
Google Scholar
Gao, J. et al. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat. Commun. 15, 3514 (2024).
Google Scholar
Guo, X., Lv, J. & Xi, R. The specification and function of enteroendocrine cells in Drosophila and mammals: a comparative review. FEBS J. 289, 4773–4796 (2022).
Google Scholar
Xia, Q. et al. PARP-1 inhibition rescues short lifespan in hyperglycemic C. elegans and improves GLP-1 secretion in human cells. Aging Dis. 9, 17–30 (2018).
Google Scholar
Gadgaard, S. et al. Long-acting agonists of human and rodent GLP-2 receptors for studies of the physiology and pharmacological potential of the GLP-2 system. Biomed. Pharmacother. 160, 114383 (2023).
Google Scholar
Reiner, J. et al. Dapiglutide, a novel dual GLP-1 and GLP-2 receptor agonist, attenuates intestinal insufficiency in a murine model of short bowel. J. Parenter. Enter. Nutr. 46, 1107–1118 (2022).
Cho, W., Kim, S. & Park, Y. G. Towards multiplexed immunofluorescence of 3D tissues. Mol. Brain 16, 37 (2023).
Google Scholar
Diefenbach, A., Gnafakis, S. & Shomrat, O. Innate lymphoid cell-epithelial cell modules sustain intestinal homeostasis. Immunity 52, 452–463 (2020).
Google Scholar
Beumer, J. et al. Mapping prohormone processing by proteases in human enteroendocrine cells using genetically engineered organoid models. Proc. Natl Acad. Sci .USA 119, e2212057119 (2022).
Afroze, S. et al. The physiological roles of secretin and its receptor. Ann. Transl. Med 1, 29 (2013).
Google Scholar
Markovic, M. A. & Brubaker, P. L. The roles of glucagon-like peptide-2 and the intestinal epithelial insulin-like growth factor-1 receptor in regulating microvillus length. Sci. Rep. 9 (2019).
Cekic, C. et al. Evaluation of the relationship between serum ghrelin, C-reactive protein and interleukin-6 levels, and disease activity in inflammatory bowel diseases. Hepatogastroenterology 61, 1196–1200 (2014).
Google Scholar
Epelboym, I. & Mazeh, H. Zollinger-Ellison syndrome: classical considerations and current controversies. Oncologist 19, 44–50 (2014).
Google Scholar
Modlin, I. M., Lye, K. D. & Kidd, M. Carcinoid tumors of the stomach. Surg. Oncol. 12, 153–172 (2003).
Google Scholar