Chromosome-level genome assembly of the Tyrrhenian tree frog (Hyla sarda)

  • Bernini, F., Doria, G., Razzetti, E. & Sindaco, R. Atlas of Italian Amphibians and Reptiles. (Societas Herpetologica Italica, Polistampa, 2006).

  • Lanza, B., Andreone, F., Bologna, M. A., Corti, C. & Razzetti, E. Amphibia. Fauna d’Italia (Calderini, 2007).

  • Romano, A. et al. Hyla sarda. The IUCN Red List of Threatened Species 2024, e.T55645A223764163 https://doi.org/10.2305/IUCN.UK.2024-2.RLTS.T55645A223764163.en (2023).

  • Bisconti, R., Canestrelli, D. & Nascetti, G. Genetic diversity and evolutionary history of the Tyrrhenian treefrog Hyla sarda (Anura: Hylidae): adding pieces to the puzzle of Corsica-Sardinia biota. Biological Journal of The Linnean Society 103, 159–167, https://doi.org/10.1111/j.1095-8312.2011.01643.x (2011).

    Article 

    Google Scholar 

  • Bisconti, R., Canestrelli, D., Colangelo, P. & Nascetti, G. Multiple lines of evidence for demographic and range expansion of a temperate species (Hyla sarda) during the last glaciation. Mol. Ecol. 20, 5313–5327, https://doi.org/10.1111/j.1365-294X.2011.05363.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • Spadavecchia, G., Chiocchio, A., Bisconti, R. & Canestrelli, D. Paso doble: A two-step Late Pleistocene range expansion in the Tyrrhenian tree frog Hyla sarda. Gene 780, 145489, https://doi.org/10.1016/j.gene.2021.145489 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bisconti, R., Chiocchio, A., Costantini, D., Carere, C. & Canestrelli, D. Drivers of phenotypic variation along a Late Pleistocene range expansion route. J. Biogeogr.e70044, https://doi.org/10.1111/jbi.70044 (2025).

  • Spadavecchia, G. et al. Spatial differentiation of background matching strategies along a Late Pleistocene range expansion route. Evol. Ecol. 37, 291–303, https://doi.org/10.1007/s10682-022-10216-2 (2023).

    Article 

    Google Scholar 

  • Liparoto, A., Canestrelli, D., Bisconti, R., Carere, C. & Costantini, D. Biogeographic history moulds population differentiation in ageing of oxidative status in an amphibian. J. Exp. Biol. 223, jeb235002, https://doi.org/10.1242/jeb.235002 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Canestrelli, D. et al. Biogeography of telomere dynamics in a vertebrate. Ecography (Cop.) 44, 453–455, https://doi.org/10.1111/ecog.05286 (2021).

    Article 
    ADS 

    Google Scholar 

  • Bisconti, R. et al. Evolution of personality and locomotory performance traits during a Late Pleistocene island colonization in a tree frog. Curr. Zool. 69, 631–641, https://doi.org/10.1093/cz/zoac062 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Kosch, T. A. et al. Comparative analysis of amphibian genomes: An emerging resource for basic and applied research. Mol. Ecol. Resour. 25, e14025, https://doi.org/10.1111/1755-0998.14025 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Challis, R., Kumar, S., Sotero-Caio, C., Brown, M. & Blaxter, M. Genomes on a Tree (GoaT): A versatile, scalable search engine for genomic and sequencing project metadata across the eukaryotic tree of life. Wellcome Open Res 8, 24, https://doi.org/10.12688/wellcomeopenres.18658.1 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morescalchi, A. Evolution and karyology of the amphibians. Boll. Zool. 47, 113–126, https://doi.org/10.1080/11250008009438709 (1980).

    Article 

    Google Scholar 

  • Bredeson, J. V. et al. Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs. Nat. Commun. 15, 579, https://doi.org/10.1038/s41467-023-43012-9 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeffries, D. L. et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat. Commun. 9, 4088, https://doi.org/10.1038/s41467-018-06517-2 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dufresnes, C., Brelsford, A., Baier, F. & Perrin, N. When sex chromosomes recombine only in the heterogametic sex: Heterochiasmy and heterogamety in Hyla tree frogs. Mol. Biol. Evol. 38, 192–200, https://doi.org/10.1093/molbev/msaa201 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746, https://doi.org/10.1038/s41586-021-03451-0 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Libro, P. et al. First brain de novo transcriptome of the Tyrrhenian tree frog, Hyla sarda, for the study of dispersal behavior. Front. Ecol. Evol. 10, 947186, https://doi.org/10.3389/fevo.2022.947186 (2022).

    Article 

    Google Scholar 

  • Larivière, D. et al. Scalable, accessible and reproducible reference genome assembly and evaluation in Galaxy. Nat. Biotechnol. 42, 367–370, https://doi.org/10.1038/s41587-023-02100-3 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245, https://doi.org/10.1186/s13059-020-02134-9 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432, https://doi.org/10.1038/s41467-020-14998-3 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175, https://doi.org/10.1038/s41592-020-01056-5 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bocklandt, S., Hastie, A. & Cao, H. Bionano genome mapping: High-throughput, ultra-long molecule genome analysis system for precision genome assembly and haploid-resolved structural variation discovery. in Single molecule and single cell sequencing. Advances in Experimental Medicine and Biology, vol 1129 (ed. Suzuki, Y.) 97-118 https://doi.org/10.1007/978-981-13-6037-4_7 (Springer, Singapore, 2019).

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 https://doi.org/10.48550/arXiv.1303.3997 (2013).

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079, https://doi.org/10.1093/bioinformatics/btp352 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808, https://doi.org/10.1093/bioinformatics/btac808 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Howe, K. et al. Significantly improving the quality of genome assemblies through curation. Gigascience 10, giaa153, https://doi.org/10.1093/gigascience/giaa153 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vertebrate Genomes Project & NCBI RefSeq Hyla sarda genome assembly aHylSar1.hap1. NCBI GenBank http://identifiers.org/assembly:GCF_029499605.1 (2023)

  • Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome research 19, 1639–1645, http://www.genome.org/cgi/doi/10.1101/gr.092759.109 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baril, T., Galbraith, J. & Hayward, A. Earl Grey: A fully automated user-friendly transposable element annotation and analysis pipeline. Mol. Biol. Evol. 41, msae068, https://doi.org/10.1093/molbev/msae068 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA. 117, 9451–9457, https://doi.org/10.1073/pnas.1921046117 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. 2013-2015. (2015).

  • Storer, J., Hubley, R., Rosen, J., Wheeler, T. J. & Smit, A. F. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob. DNA 12, 1–14, https://doi.org/10.1186/s13100-020-00230-y (2021).

    Article 

    Google Scholar 

  • Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 1–6, https://doi.org/10.1186/s13100-015-0041-9 (2015).

    Article 

    Google Scholar 

  • Thibaud-Nissen, F., Souvorov, A., Murphy, T. D., DiCuccio, M. & Kitts, P. P8008 the NCBI eukaryotic genome annotation pipeline. Journal of Animal Science 94, 184–184, https://doi.org/10.2527/jas2016.94supplement4184x (2016).

    Article 

    Google Scholar 

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212, https://doi.org/10.1093/bioinformatics/btv351 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654, https://doi.org/10.1093/molbev/msab199 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811, https://doi.org/10.1093/nar/gky1053 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Nevers, Y. et al. Quality assessment of gene repertoire annotations with OMArk. Nat. Biotechnol. 43, 124–133, https://doi.org/10.1038/s41587-024-02147-w (2025).

    Article 
    PubMed 

    Google Scholar 

  • Uliano-Silva, M. et al. MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. BMC Bioinformatics 24, 288, https://doi.org/10.1186/s12859-023-05385-y (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allio, R. et al. MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol. Ecol. Resour. 20, 892–905, https://doi.org/10.1111/1755-0998.13160 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyla annectans mitochondrion, complete genome. NCBI GenBank http://identifiers.org/insdc:KM271781.1 (2019)

  • Vertebrate Genomes Project. Hyla sarda genome assembly aHylSar1.hap2. NCBI GenBank http://identifiers.org/assembly:GCA_029493135.1 (2023).

  • Hyla sarda isolate aHylSar1 mitochondrion, complete sequence, whole genome shotgun sequence. NCBI GenBank http://identifiers.org/insdc:CM056048.1 (2023)

  • Formenti, G. et al. Gfastats: conversion, evaluation and manipulation of genome sequences using assembly graphs. Bioinformatics 38, 4214–4216, https://doi.org/10.1093/bioinformatics/btac460 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, M. R., Gonzalez de La Rosa, P. & Blaxter, M. tidk: a toolkit to rapidly identify telomeric repeats from genomic datasets. Bioinformatics 41, btaf049, https://doi.org/10.1093/bioinformatics/btaf049 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading