Targeting MHC-E as a new strategy for vaccines and immunotherapeutics

  • Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genom. Hum. Genet. 14, 301–323 (2013).

    Article 
    CAS 

    Google Scholar 

  • D’Souza, M. P. et al. Casting a wider net: immunosurveillance by nonclassical MHC molecules. PLoS Pathog. 15, e1007567 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Borrego, F., Ulbrecht, M., Weiss, E. H., Coligan, J. E. & Brooks, A. G. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J. Exp. Med. 187, 813–818 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl Acad. Sci. USA 95, 5199–5204 (1998). This seminal study, together with Braud et al. (1998) and Borrego et al. (1998), identifies the role of HLA-E binding to CD94–NKG2A and CD94–NKG2C in modulating NK cell activation according to levels of HLA-Ia signal sequence presentation on the target cell.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aldrich, C. J. et al. Identification of a Tap-dependent leader peptide recognized by alloreactive T cells specific for a class Ib antigen. Cell 79, 649–658 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, N., Goodlett, D. R., Ishitani, A., Marquardt, H. & Geraghty, D. E. HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J. Immunol. 160, 4951–4960 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Braud, V., Jones, E. Y. & McMichael, A. The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur. J. Immunol. 27, 1164–1169 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Knapp, L. A., Cadavid, L. F. & Watkins, D. I. The MHC-E locus is the most well conserved of all known primate class I histocompatibility genes. J. Immunol. 160, 189–196 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geraghty, D. E., Stockschleader, M., Ishitani, A. & Hansen, J. A. Polymorphism at the HLA-E locus predates most HLA-A and -B polymorphism. Hum. Immunol. 33, 174–184 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Strong, R. K. et al. HLA-E allelic variants. Correlating differential expression, peptide affinities, crystal structures, and thermal stabilities. J. Biol. Chem. 278, 5082–5090 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gillespie, G. M., Quastel, M. N. & McMichael, A. J. HLA-E: immune receptor functional mechanisms revealed by structural studies. Immunol. Rev. 329, e13434 (2025). This work provides a comprehensive review of structural and biochemical studies of HLA-E.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Hall, T., Oliveira, C. C., Joosten, S. A. & Ottenhoff, T. H. The other Janus face of Qa-1 and HLA-E: diverse peptide repertoires in times of stress. Microbes Infect. 12, 910–918 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Wei, X. H. & Orr, H. T. Differential expression of HLA-E, HLA-F, and HLA-G transcripts in human tissue. Hum. Immunol. 29, 131–142 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Middelburg, J. et al. The MHC-E peptide ligands for checkpoint CD94/NKG2A are governed by inflammatory signals, whereas LILRB1/2 receptors are peptide indifferent. Cell Rep. 42, 113516 (2023). This paper shows that MHC-E is a ligand for inhibitory receptors LIR1 and LIR2 irrespective of peptide ligand. Using CRISPR screening, the authors also identify gene products involved in processing of VL9 peptides.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Braud, V. M., Allan, D. S., Wilson, D. & McMichael, A. J. TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr. Biol. 8, 1–10 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, W. et al. Intracellular trafficking of HLA-E and its regulation. J. Exp. Med. 220, e20221941 (2023). This study shows that the cytoplasmic tail of HLA-E contains internalization signals, which explains the short half-life of HLA-E on the cell surface.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, J. H. et al. CD94 and a novel associated protein (94AP) form a NK cell receptor involved in the recognition of HLA-A, HLA-B, and HLA-C allotypes. Immunity 5, 163–172 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Le Drean, E. et al. Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases. Eur. J. Immunol. 28, 264–276 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Carretero, M. et al. Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor function in heterologous transfectants. Eur. J. Immunol. 28, 1280–1291 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lanier, L. L., Corliss, B., Wu, J. & Phillips, J. H. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8, 693–701 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horowitz, A. et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med. 5, 208ra145 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mingari, M. C. et al. HLA class I-specific inhibitory receptors in human T lymphocytes: interleukin 15-induced expression of CD94/NKG2A in superantigen- or alloantigen-activated CD8+ T cells. Proc. Natl Acad. Sci. USA 95, 1172–1177 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andre, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018). This study shows that HLA-E–NKG2A is a new immune checkpoint for cancer therapy because blocking NKG2A increases the anti-tumour activity of NK cells and of tumour-specific T cells, including those induced by cancer vaccines.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaiser, B. K., Pizarro, J. C., Kerns, J. & Strong, R. K. Structural basis for NKG2A/CD94 recognition of HLA-E. Proc. Natl Acad. Sci. USA 105, 6696–6701 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaiser, B. K. et al. Interactions between NKG2x immunoreceptors and HLA-E ligands display overlapping affinities and thermodynamics. J. Immunol. 174, 2878–2884 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • MacLachlan, B. J., Sullivan, L. C., Brooks, A. G., Rossjohn, J. & Vivian, J. P. Structure of the murine CD94-NKG2A receptor in complex with Qa-1b presenting an MHC-I leader peptide. FEBS J. 291, 1530–1544 (2024). This paper shows that the high-resolution structure of CD94–NKG2A with the murine MHC-E homologue Qa-1b shows similarities and differences compared with their human counterparts, thus paving the way for a humanized mouse.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Michaëlsson, J. et al. A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J. Exp. Med. 196, 1403–1414 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huisman, B. D. et al. High-throughput characterization of HLA-E-presented CD94/NKG2x ligands reveals peptides which modulate NK cell activation. Nat. Commun. 14, 4809 (2023). This work has developed a systematic screen of peptides binding to HLA-E and their effect on receptor binding that reveals differential peptide specificities of CD94–NKG2A and CD94–NKG2C.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willcox, B. E., Thomas, L. M. & Bjorkman, P. J. Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat. Immunol. 4, 913–919 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shiroishi, M. et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc. Natl Acad. Sci. USA 100, 8856–8861 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horowitz, A. et al. Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci. Immunol. 1, eaag1672 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, Z. et al. HLA class I signal peptide polymorphism determines the level of CD94/NKG2-HLA-E-mediated regulation of effector cell responses. Nat. Immunol. 24, 1087–1097 (2023). This work shows that VL9 sequence polymorphism in HLA alleles is reflected in HCMV UL40 VL9 and impacts NK cell responses.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cazzetta, V., Depierreux, D., Colucci, F., Mikulak, J. & Mavilio, D. NKG2A immune checkpoint in Vδ2 T cells: emerging application in cancer immunotherapy. Cancers 15, 1264 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rapaport, A. S. et al. The inhibitory receptor NKG2A sustains virus-specific CD8+ T cells in response to a lethal poxvirus infection. Immunity 43, 1112–1124 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X., Feng, J., Chen, S., Yang, H. & Dong, Z. Synergized regulation of NK cell education by NKG2A and specific Ly49 family members. Nat. Commun. 10, 5010 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaulfuss, M. et al. The NK cell checkpoint NKG2A maintains expansion capacity of human NK cells. Sci. Rep. 13, 10555 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siemaszko, J., Marzec-Przyszlak, A. & Bogunia-Kubik, K. Activating NKG2C receptor: functional characteristics and current strategies in clinical applications. Arch. Immunol. Ther. Exp. 71, 9 (2023).

    Article 
    CAS 

    Google Scholar 

  • Lauterbach, N., Wieten, L., Popeijus, H. E., Voorter, C. E. & Tilanus, M. G. HLA-E regulates NKG2C+ natural killer cell function through presentation of a restricted peptide repertoire. Hum. Immunol. 76, 578–586 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rolle, A., Meyer, M., Calderazzo, S., Jager, D. & Momburg, F. Distinct HLA-E peptide complexes modify antibody-driven effector functions of adaptive NK cells. Cell Rep. 24, 1967–1976.e4 (2018). This study shows that the HLA-E ligandome affects the activity and proliferation of NKG2C+ NK cells.

    Article 
    PubMed 

    Google Scholar 

  • Lopez-Verges, S. et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA 108, 14725–14732 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foley, B. et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 119, 2665–2674 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopez-Botet, M., De Maria, A., Muntasell, A., Della Chiesa, M. & Vilches, C. Adaptive NK cell response to human cytomegalovirus: facts and open issues. Semin. Immunol. 65, 101706 (2023). This paper provides a comprehensive review of HCMV-induced adaptive NK cells.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Della Chiesa, M. et al. Human cytomegalovirus infection promotes rapid maturation of NK cells expressing activating killer Ig-like receptor in patients transplanted with NKG2C−/− umbilical cord blood. J. Immunol. 192, 1471–1479 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Luetke-Eversloh, M. et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog. 10, e1004441 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. et al. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42, 431–442 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schlums, H. et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42, 443–456 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, F. et al. Biology and clinical relevance of HCMV-associated adaptive NK cells. Front. Immunol. 13, 830396 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costa-Garcia, M. et al. Antibody-mediated response of NKG2Cbright NK cells against human cytomegalovirus. J. Immunol. 194, 2715–2724 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ulbrecht, M. et al. Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J. Immunol. 164, 5019–5022 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287, 1031 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Powers, C. J. & Früh, K. Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus. PLoS Pathog. 4, e1000150 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brackenridge, S. et al. Regulation of the cell surface expression of classical and non-classical MHC proteins by the human cytomegalovirus UL40 and rhesus cytomegalovirus Rh67 proteins. J. Virol. 98, e0120624 (2024). This study shows that UL40 and Rh67 of HCMV and RhCMV, respectively, not only promote MHC-E egress to the cell surface via their VL9 sequences but also retain classical MHC-I proteins in the ER.

    Article 
    PubMed 

    Google Scholar 

  • Hammer, Q. et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol. 19, 453–463 (2018). This paper shows that VL9 sequences determine NKG2C-dependent NK cell activation.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koldehoff, M., Ross, S. R., Dührsen, U., Beelen, D. W. & Elmaagacli, A. H. Early CMV-replication after allogeneic stem cell transplantation is associated with a reduced relapse risk in lymphoma. Leuk. Lymphoma 58, 822–833 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ram, D. R. et al. Tracking KLRC2 (NKG2C)+ memory-like NK cells in SIV+ and rhCMV+ rhesus macaques. PLoS Pathog. 14, e1007104 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Truitt, L. L. et al. Impact of CMV infection on natural killer cell clonal repertoire in CMV-naive rhesus macaques. Front. Immunol. 10, 2381 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin Almazan, N. et al. Non-classical HLA-E restricted CMV 15-mer peptides are recognized by adaptive NK cells and induce memory responses. Front. Immunol. 14, 1230718 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilkinson, G. W. et al. Modulation of natural killer cells by human cytomegalovirus. J. Clin. Virol. 41, 206–212 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Redondo-Pachon, D. et al. Adaptive NKG2C+ NK cell response and the risk of cytomegalovirus infection in kidney transplant recipients. J. Immunol. 198, 94–101 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ataya, M. et al. Long-term evolution of the adaptive NKG2C+ NK cell response to cytomegalovirus infection in kidney transplantation: an insight on the diversity of host-pathogen interaction. J. Immunol. 207, 1882–1890 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vietzen, H. et al. Extent of cytomegalovirus replication in the human host depends on variations of the HLA-E/UL40 axis. mBio 12, e02996–02920 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vietzen, H., Pollak, K., Honsig, C., Jaksch, P. & Puchhammer-Stockl, E. NKG2C deletion is a risk factor for human cytomegalovirus viremia and disease after lung transplantation. J. Infect. Dis. 217, 802–806 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mittelbronn, M. et al. Elevated HLA-E levels in human glioblastomas but not in grade I to III astrocytomas correlate with infiltrating CD8+ cells. J. Neuroimmunol. 189, 50–58 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gooden, M. et al. HLA-E expression by gynecological cancers restrains tumor-infiltrating CD8+ T lymphocytes. Proc. Natl Acad. Sci. USA 108, 10656–10661 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benevolo, M. et al. High expression of HLA-E in colorectal carcinoma is associated with a favorable prognosis. J. Transl. Med. 9, 184 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seliger, B. et al. HLA-E expression and its clinical relevance in human renal cell carcinoma. Oncotarget 7, 67360–67372 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamiya, T., Seow, S. V., Wong, D., Robinson, M. & Campana, D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Invest. 129, 2094–2106 (2019). This paper implicates NKG2A as a checkpoint for NK cell-mediated killing of tumour cells; see also Andre et al. (2018) and van Montfoort et al. (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iyer, R. F. et al. CD8+ T cell targeting of tumor antigens presented by HLA-E. Sci. Adv. 10, eadm7515 (2024). This work shows that RhCMV vectors expressing tumour-associated antigens elicit strong MHC-E-restricted T cell responses in non-human primates that cross-react with HLA-E-expressing human cancer cells.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wen, M. et al. Expression and clinical significance of NKG2A and HLA-E in advanced laryngeal carcinoma. Pathol. Res. Pract. 260, 155383 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, X. et al. Immune checkpoints HLA-E:CD94-NKG2A and HLA-C:KIR2DL1 complementarily shield circulating tumor cells from NK-mediated immune surveillance. Cell Discov. 10, 16 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. et al. Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell 41, 272–287.e9 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Hall, T. et al. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J. Immunother. Cancer 7, 263 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, A. & Yan, W. H. Heterogeneity of HLA-G expression in cancers: facing the challenges. Front. Immunol. 9, 2164 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, W. et al. FcRγ gene editing reprograms conventional NK cells to display key features of adaptive human NK cells. iScience 23, 101709 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lo Monaco, E. et al. Human leukocyte antigen E contributes to protect tumor cells from lysis by natural killer cells. Neoplasia 13, 822–830 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Green, M. L. et al. CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia. Blood 122, 1316–1324 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elmaagacli, A. H. et al. Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood 118, 1402–1412 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cichocki, F. et al. Adaptive NK cell reconstitution is associated with better clinical outcomes. JCI Insight 4, e125553 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Litjens, N. H. R., van der Wagen, L., Kuball, J. & Kwekkeboom, J. Potential beneficial effects of cytomegalovirus infection after transplantation. Front. Immunol. 9, 389 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiu, E. et al. Anti-NKG2C/IL-15/anti-CD33 killer engager directs primary and iPSC-derived NKG2C+ NK cells to target myeloid leukemia. Mol. Ther. 29, 3410–3421 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho, H. et al. Adaptive natural killer cells facilitate effector functions of daratumumab in multiple myeloma. Clin. Cancer Res. 27, 2947–2958 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bigley, A. B. et al. Latent cytomegalovirus infection enhances anti-tumour cytotoxicity through accumulation of NKG2C+ NK cells in healthy humans. Clin. Exp. Immunol. 185, 239–251 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murad, S. et al. NKG2C+ NK cells for immunotherapy of glioblastoma multiforme. Int. J. Mol. Sci. 23, 5857 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haroun-Izquierdo, A. et al. Adaptive single-KIR+NKG2C+ NK cells expanded from select superdonors show potent missing-self reactivity and efficiently control HLA-mismatched acute myeloid leukemia. J. Immunother. Cancer 10, e005577 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Montfoort, N. et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 175, 1744–1755.e15 (2018). Using mouse models of cancer, this study shows that cancer vaccines elicit NKG2A-expressing T cells that are less effective at controlling cancers unless NKG2A is blocked.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheffer, M. et al. Genome-scale screens identify factors regulating tumor cell responses to natural killer cells. Nat. Genet. 53, 1196–1206 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J. Immunother. Cancer 12, e009934 (2024). This work is a recent review of ongoing clinical studies of NKG2A-targeting and HLA-E-targeting immune checkpoint inhibitors.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fisher, J. G., Graham, L. V. & Blunt, M. D. Strategies to disrupt NKG2A:HLA-E interactions for improved anti-cancer immunity. Oncotarget 15, 501–503 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borst, L. et al. NKG2A is a late immune checkpoint on CD8 T cells and marks repeated stimulation and cell division. Int. J. Cancer 150, 688–704 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abd Hamid, M. et al. Enriched HLA-E and CD94/NKG2A interaction limits antitumor CD8+ tumor-infiltrating T lymphocyte responses. Cancer Immunol. Res. 7, 1293–1306 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Chen, Y. et al. CD8+ T cells form the predominant subset of NKG2A+ cells in human lung cancer. Front. Immunol. 10, 3002 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fesneau, O. et al. IL-12 drives the expression of the inhibitory receptor NKG2A on human tumor-reactive CD8 T cells. Nat. Commun. 15, 9988 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Speiser, D. E. et al. In vivo expression of natural killer cell inhibitory receptors by human melanoma-specific cytolytic T lymphocytes. J. Exp. Med. 190, 775–782 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ducoin, K. et al. Targeting NKG2A to boost anti-tumor CD8 T-cell responses in human colorectal cancer. Oncoimmunology 11, 2046931 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salomé, B. et al. NKG2A and HLA-E define an alternative immune checkpoint axis in bladder cancer. Cancer Cell 40, 1027–1043.e9 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Battin, C. et al. NKG2A-checkpoint inhibition and its blockade critically depends on peptides presented by its ligand HLA-E. Immunology 166, 507–521 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eugene, J. et al. The inhibitory receptor CD94/NKG2A on CD8+ tumor-infiltrating lymphocytes in colorectal cancer: a promising new druggable immune checkpoint in the context of HLAE/β2m overexpression. Mod. Pathol. 33, 468–482 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haanen, J. B. & Cerundolo, V. NKG2A, a new kid on the immune checkpoint block. Cell 175, 1720–1722 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aggarwal, C. et al. Updated results from COAST, a phase 2 study of durvalumab (D) ± oleclumab (O) or monalizumab (M) in patients (pts) with stage III unresectable non-small cell lung cancer (uNSCLC). J. Clin. Oncol. 42, 8046 (2024).

    Article 

    Google Scholar 

  • Barlesi, F. et al. PACIFIC-9: phase III trial of durvalumab + oleclumab or monalizumab in unresectable stage III non-small-cell lung cancer. Future Oncol. 20, 2137–2147 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spinosa, P. et al. Quantitative modeling predicts competitive advantages of a next generation anti-NKG2A monoclonal antibody over monalizumab for the treatment of cancer. CPT Pharmacomet. Syst. Pharmacol. 10, 220–229 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Y. et al. Generation, characterization, and preclinical studies of a novel NKG2A-targeted antibody BRY805 for cancer immunotherapy. Antibodies 13, 93 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ravindranath, M. H., Filippone, E. J., Devarajan, A. & Asgharzadeh, S. Enhancing natural killer and CD8+ T cell-mediated anticancer cytotoxicity and proliferation of CD8+ T cells with HLA-E monospecific monoclonal antibodies. Monoclon. Antib. Immunodiagn. Immunother. 38, 38–59 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwang, J. K. et al. HLA-E-VL9 antibodies enhance NK cell and CD8+ T cell cytotoxicity against HIV-infected CD4+ T cells. Preprint at bioRxiv https://doi.org/10.1101/2024.07.08.602401 (2024).

  • Carlsten, M. et al. Bortezomib sensitizes multiple myeloma to NK cells via ER-stress-induced suppression of HLA-E and upregulation of DR5. Oncoimmunology 8, e1534664 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Tsao, H.-W. et al. Targeting the aminopeptidase ERAP enhances antitumor immunity by disrupting the NKG2A-HLA-E inhibitory checkpoint. Immunity 57, 2863–2878 (2024). This study shows the utility of targeting ERAP (which is known to be required for VL9 processing for presentation by HLA-E) as a strategy for inhibiting HLA-E–NKG2A-mediated checkpoint control of NK cell and CD8+ T cell activity.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fisher, J. G. et al. XPO1 inhibition sensitises CLL cells to NK cell mediated cytotoxicity and overcomes HLA-E expression. Leukemia 37, 2036–2049 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westin, J. R. et al. Efficacy and safety of CD19-directed CAR-T cell therapies in patients with relapsed/refractory aggressive B-cell lymphomas: observations from the JULIET, ZUMA-1, and TRANSCEND trials. Am. J. Hematol. 96, 1295–1312 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, M. & Chen, Y. Y. Killer fatigue: transition to NK-cell-like phenotype is a signature of CAR-T cell exhaustion. Cell 184, 6017–6019 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100.e26 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bexte, T. et al. CRISPR/Cas9 editing of NKG2A improves the efficacy of primary CD33-directed chimeric antigen receptor natural killer cells. Nat. Commun. 15, 8439 (2024). This paper shows that CAR NK cell activity against CD33-expressing target cells can be improved by gene editing to remove NKG2A expression.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saetersmoen, M. et al. Targeting HLA-E-overexpressing cancers with a NKG2A/C switch receptor. Med 6, 100521 (2024). This paper shows that a fusion protein design of the NKG2A ligand-binding domain with the NKG2C signalling domain combines the increased affinity of NKG2A for VL9–HLA-E with the activating signalling provided by NKG2C.

    Article 
    PubMed 

    Google Scholar 

  • Voogd, L. et al. Mtb-specific HLA-E-restricted T cells are induced during Mtb infection but not after BCG administration in non-human primates and humans. Vaccines 12, 1129 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mazzarino, P. et al. Identification of effector-memory CMV-specific T lymphocytes that kill CMV-infected target cells in an HLA-E-restricted fashion. Eur. J. Immunol. 35, 3240–3247 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garcia, P. et al. Human T cell receptor-mediated recognition of HLA-E. Eur. J. Immunol. 32, 936–944 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pietra, G. et al. HLA-E-restricted recognition of cytomegalovirus-derived peptides by human CD8+ cytolytic T lymphocytes. Proc. Natl Acad. Sci. USA 100, 10896–10901 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Romagnani, C. et al. HLA-E-restricted recognition of human cytomegalovirus by a subset of cytolytic T lymphocytes. Hum. Immunol. 65, 437–445 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jouand, N. et al. HCMV triggers frequent and persistent UL40-specific unconventional HLA-E-restricted CD8 T-cell responses with potential autologous and allogeneic peptide recognition. PLoS Pathog. 14, e1007041 (2018). This study shows that UL40-encoded VL9 sequences can be targeted by HLA-E-restricted T cells in HCMV-infected humans.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rousseliere, A., Delbos, L., Bressollette, C., Berthaume, M. & Charreau, B. Mapping and characterization of HCMV-specific unconventional HLA-E-restricted CD8 T cell populations and associated NK and T cell responses using HLA/peptide tetramers and spectral flow cytometry. Int. J. Mol. Sci. 23, 263 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allard, M. et al. HLA-E-restricted cross-recognition of allogeneic endothelial cells by CMV-associated CD8 T cells: a potential risk factor following transplantation. PLoS ONE 7, e50951 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan, L. C. et al. The presence of HLA-E-restricted, CMV-specific CD8+ T cells in the blood of lung transplant recipients correlates with chronic allograft rejection. PLoS ONE 10, e0135972 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waters, S. et al. Do variations in the HLA-E ligand encoded by UL40 distinguish individuals susceptible to HCMV disease? Hum. Immunol. 84, 75–79 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Tarrago, D., Gonzalez, I. & Gonzalez-Escribano, M. F. HLA-E restricted cytomegalovirus UL40 peptide polymorphism may represent a risk factor following congenital infection. BMC Genom. 23, 455 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sullivan, L. C. et al. Natural killer cell receptors regulate responses of HLA-E-restricted T cells. Sci. Immunol. 6, eabe9057 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sullivan, L. C. et al. A conserved energetic footprint underpins recognition of human leukocyte antigen-E by two distinct αβ T cell receptors. J. Biol. Chem. 292, 21149–21158 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoare, H. L. et al. Structural basis for a major histocompatibility complex class Ib-restricted T cell response. Nat. Immunol. 7, 256–264 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lo Monaco, E. et al. HLA-E: strong association with β2-microglobulin and surface expression in the absence of HLA class I signal sequence-derived peptides. J. Immunol. 181, 5442–5450 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brackenridge, S., John, N., Früh, K., Borrow, P. & McMichael, A. J. The antibodies 3D12 and 4D12 recognise distinct epitopes and conformations of HLA-E. Front. Immunol. 15, 1329032 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walters, L. C. et al. Pathogen-derived HLA-E bound epitopes reveal broad primary anchor pocket tolerability and conformationally malleable peptide binding. Nat. Commun. 9, 3137 (2018). This paper shows that HLA-E can bind a wide variety of peptides, and it suggests that some of the peptides targeted by CD8+ T cells bind very poorly to HLA-E.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grant, E. J. et al. The unconventional role of HLA-E: the road less traveled. Mol. Immunol. 120, 101–112 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pietra, G., Romagnani, C., Manzini, C., Moretta, L. & Mingari, M. C. The emerging role of HLA-E-restricted CD8+ T lymphocytes in the adaptive immune response to pathogens and tumors. J. Biomed. Biotechnol. 2010, 907092 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lampen, M. H. et al. Alternative peptide repertoire of HLA-E reveals a binding motif that is strikingly similar to HLA-A2. Mol. Immunol. 53, 126–131 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McMurtrey, C. et al. T cell recognition of Mycobacterium tuberculosis peptides presented by HLA-E derived from infected human cells. PLoS ONE 12, e0188288 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruibal, P. et al. Peptide binding to HLA-E molecules in humans, nonhuman primates, and mice reveals unique binding peptides but remarkably conserved anchor residues. J. Immunol. 205, 2861–2872 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Celik, A. A., Kraemer, T., Huyton, T., Blasczyk, R. & Bade-Doding, C. The diversity of the HLA-E-restricted peptide repertoire explains the immunological impact of the Arg107Gly mismatch. Immunogenetics 68, 29–41 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kraemer, T. et al. HLA-E: presentation of a broader peptide repertoire impacts the cellular immune response-implications on HSCT outcome. Stem Cell Int. 2015, 346714 (2015).

    Google Scholar 

  • Weitzen, M., Shahbazy, M., Kapoor, S. & Caron, E. Deciphering the HLA-E immunopeptidome with mass spectrometry: an opportunity for universal mRNA vaccines and T-cell-directed immunotherapies. Front. Immunol. 15, 1442783 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Hall, T. et al. The varicellovirus-encoded TAP inhibitor UL49.5 regulates the presentation of CTL epitopes by Qa-1b1. J. Immunol. 178, 657–662 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Guan, J., Peske, J. D., Taylor, J. A. & Shastri, N. The nonclassical immune surveillance for ERAAP function. Curr. Opin. Immunol. 70, 105–111 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagarajan, N. A., Gonzalez, F. & Shastri, N. Nonclassical MHC class Ib-restricted cytotoxic T cells monitor antigen processing in the endoplasmic reticulum. Nat. Immunol. 13, 579–586 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doorduijn, E. M. et al. T cells engaging the conserved MHC class Ib molecule Qa-1b with TAP-independent peptides are semi-invariant lymphocytes. Front. Immunol. 9, 60 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manoharan Valerio, M. et al. The promiscuous development of an unconventional Qa1b-restricted T cell population. Front. Immunol. 14, 1250316 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geiger, K. M. et al. Murine cytomegalovirus downregulates ERAAP and induces an unconventional T cell response to self. Cell Rep. 42, 112317 (2023). This paper shows that downregulation of ERAAP by murine CMV results in the induction of T cells specific for Qa-1b presenting a similar self-peptide. The same Qa-1b-specific T cell population was observed in ERAAP-knockout mice by Nagarajan et al. (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Picker, L. J., Lifson, J. D., Gale, M. Jr., Hansen, S. G. & Früh, K. Programming cytomegalovirus as an HIV vaccine. Trends Immunol. 44, 287–304 (2023). This work provides a comprehensive review on the ability of CMV vectors to elicit MHC-E-restricted T cells.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, B. D. CMV, MHC-E, and the quest for an unconventional AIDS vaccine. Sci. Immunol. 6, eabi5830 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barry, P. A. et al. Cytomegalovirus-vectored vaccines for HIV and other pathogens. AIDS 34, 335–349 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Früh, K. & Picker, L. CD8+ T cell programming by cytomegalovirus vectors: applications in prophylactic and therapeutic vaccination. Curr. Opin. Immunol. 47, 52–56 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sylwester, A. W. et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 202, 673–685 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kern, F. et al. Distribution of human CMV-specific memory T cells among the CD8pos. subsets defined by CD57, CD27, and CD45 isoforms. Eur. J. Immunol. 29, 2908–2915 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Masopust, D. & Picker, L. J. Hidden memories: frontline memory T cells and early pathogen interception. J. Immunol. 188, 5811–5817 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen, S. G. et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med. 15, 293–299 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, S. G. et al. Addendum: Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med. 17, 1692 (2011).

    Article 
    CAS 

    Google Scholar 

  • Hansen, S. G. et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523–527 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, S. G. et al. Immune clearance of highly pathogenic SIV infection. Nature 502, 100–104 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, S. G. et al. A live-attenuated RhCMV/SIV vaccine shows long-term efficacy against heterologous SIV challenge. Sci. Transl. Med. 11, eaaw2607 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, S. G. et al. Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex E. Science 351, 714–720 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, S. G. et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 340, 1237874 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Malouli, D. et al. Reevaluation of the coding potential and proteomic analysis of the BAC-derived rhesus cytomegalovirus strain 68-1. J. Virol. 86, 8959–8973 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malouli, D. et al. Cytomegaloviral determinants of CD8+ T cell programming and RhCMV/SIV vaccine efficacy. Sci. Immunol. 6, eabg5413 (2021). This paper shows that multiple chemokine-like viral gene products independently prevent the induction of MHC-E-restricted T cells by CMV.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malouli, D. et al. Cytomegalovirus-vaccine-induced unconventional T cell priming and control of SIV replication is conserved between primate species. Cell Host Microbe 30, 1207–1218.e7 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malouli, D. et al. Human cytomegalovirus UL18 prevents priming of MHC-E- and MHC-II-restricted CD8+ T cells. Sci. Immunol. 9, eadp5216 (2024). This paper shows that HCMV UL18, a MHC-I-like LIR1 ligand, prevents the induction of MHC-E-restricted T cells when inserted into RhCMV.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verweij, M. C. et al. Modulation of MHC-E transport by viral decoy ligands is required for RhCMV/SIV vaccine efficacy. Science 372, eabe9233 (2021). This study shows that viral VL9 peptides encoded in viral proteins are required for the induction of MHC-E-restricted T cells and that these T cells are required for protection against SIV.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, S. G. et al. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science 328, 102–106 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Powers, C., DeFilippis, V., Malouli, D. & Früh, K. Cytomegalovirus immune evasion. Curr. Top. Microbiol. Immunol. 325, 333–359 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Hansen, S. G. et al. Myeloid cell tropism enables MHC-E-restricted CD8+ T cell priming and vaccine efficacy by the RhCMV/SIV vaccine. Sci. Immunol. 7, eabn9301 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, S. G. et al. Late gene expression-deficient cytomegalovirus vectors elicit conventional T cells that do not protect against SIV. JCI Insight 8, e164692 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, S. G. et al. Cytomegalovirus vectors expressing Plasmodium knowlesi antigens induce immune responses that delay parasitemia upon sporozoite challenge. PLoS ONE 14, e0210252 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, S. G. et al. Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat. Med. 24, 130–143 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malouli, D. et al. Cytomegalovirus vaccine vector-induced effector memory CD4+ T cells protect cynomolgus macaques from lethal aerosolized heterologous avian influenza challenge. Nat. Commun. 15, 6007 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burwitz, B. J. et al. MHC-E-restricted CD8+ T cells target hepatitis B virus-infected human hepatocytes. J. Immunol. 204, 2169–2176 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Ad5-nCoV vaccination could induce HLA-E restricted CD8+ T cell responses specific for epitopes on severe acute respiratory syndrome coronavirus 2 spike protein. Viruses 16, 5 (2023).

    Article 

    Google Scholar 

  • Hogan, M. J. et al. Cryptic MHC-E epitope from influenza elicits a potent cytolytic T cell response. Nat. Immunol. 24, 1933–1946 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walters, L. C. et al. Primary and secondary functions of HLA-E are determined by stability and conformation of the peptide-bound complexes. Cell Rep. 39, 110959 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walters, L. C., McMichael, A. J. & Gillespie, G. M. Detailed and atypical HLA-E peptide binding motifs revealed by a novel peptide exchange binding assay. Eur. J. Immunol. 50, 2075–2091 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ruibal, P. et al. Discovery of HLA-E-presented epitopes: MHC-E/peptide binding and T-cell recognition. Methods Mol. Biol. 2574, 15–30 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, H. et al. HLA-E-restricted SARS-CoV-2-specific T cells from convalescent COVID-19 patients suppress virus replication despite HLA class Ia down-regulation. Sci. Immunol. 8, eabl8881 (2023). This study shows that HLA-E-restricted, SARS-CoV-2-specific CD8+ T cells can be isolated and expanded from individuals with COVID-19.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, H. et al. HLA-E-restricted, Gag-specific CD8+ T cells can suppress HIV-1 infection, offering vaccine opportunities. Sci. Immunol. 6, eabg1703 (2021). This paper shows that HLA-E-restricted HIV-specific T cells can be isolated and expanded from HIV-naive individuals.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruibal, P. et al. Identification of HLA-E binding Mycobacterium tuberculosis-derived epitopes through improved prediction models. J. Immunol. 209, 1555–1565 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paterson, R. L. et al. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 121, e2318003121 (2024). This work determines that a bispecific antibody consisting of Mtb–HLA-E-specific TCR and anti-CD3 moieties can redirect T cells to M. tuberculosis-infected targeted cells.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wallace, Z. et al. Instability of the HLA-E peptidome of HIV presents a major barrier to therapeutic targeting. Mol. Ther. 32, 678–688 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemberg, M. K., Bland, F. A., Weihofen, A., Braud, V. M. & Martoglio, B. Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes. J. Immunol. 167, 6441–6446 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weihofen, A., Lemberg, M. K., Ploegh, H. L., Bogyo, M. & Martoglio, B. Release of signal peptide fragments into the cytosol requires cleavage in the transmembrane region by a protease activity that is specifically blocked by a novel cysteine protease inhibitor. J. Biol. Chem. 275, 30951–30956 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bland, F. A., Lemberg, M. K., McMichael, A. J., Martoglio, B. & Braud, V. M. Requirement of the proteasome for the trimming of signal peptide-derived epitopes presented by the nonclassical major histocompatibility complex class I molecule HLA-E. J. Biol. Chem. 278, 33747–33752 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coupel, S. et al. Expression and release of soluble HLA-E is an immunoregulatory feature of endothelial cell activation. Blood 109, 2806–2814 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hengel, H. et al. A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6, 623–632 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahn, K. et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613–621 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, B. et al. Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity 20, 71–85 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prod’homme, V. et al. Human cytomegalovirus UL40 signal peptide regulates cell surface expression of the NK cell ligands HLA-E and gpUL18. J. Immunol. 188, 2794–2804 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Davis, Z. B. et al. A conserved HIV-1-derived peptide presented by HLA-E renders infected T-cells highly susceptible to attack by NKG2A/CD94-bearing natural killer cells. PLoS Pathog. 12, e1005421 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hannoun, Z. et al. Identification of novel HIV-1-derived HLA-E-binding peptides. Immunol. Lett. 202, 65–72 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Romero-Martin, L. et al. Disruption of the HLA-E/NKG2X axis is associated with uncontrolled HIV infections. Front. Immunol. 13, 1027855 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peppa, D. et al. Adaptive reconfiguration of natural killer cells in HIV-1 infection. Front. Immunol. 9, 474 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guma, M. et al. Human cytomegalovirus infection is associated with increased proportions of NK cells that express the CD94/NKG2C receptor in aviremic HIV-1-positive patients. J. Infect. Dis. 194, 38–41 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Mela, C. M. et al. Switch from inhibitory to activating NKG2 receptor expression in HIV-1 infection: lack of reversion with highly active antiretroviral therapy. AIDS 19, 1761–1769 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mela, C. M. & Goodier, M. R. The contribution of cytomegalovirus to changes in NK cell receptor expression in HIV-1-infected individuals. J. Infect. Dis. 195, 158–159 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maidji, E., Somsouk, M., Rivera, J. M., Hunt, P. W. & Stoddart, C. A. Replication of CMV in the gut of HIV-infected individuals and epithelial barrier dysfunction. PLoS Pathog. 13, e1006202 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jost, S. et al. Antigen-specific memory NK cell responses against HIV and influenza use the NKG2/HLA-E axis. Sci. Immunol. 8, eadi3974 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasan, M. Z. et al. SARS-CoV-2 infection induces adaptive NK cell responses by spike protein-mediated induction of HLA-E expression. Emerg. Microbes Infect. 13, 2361019 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hammer, Q. et al. SARS-CoV-2 Nsp13 encodes for an HLA-E-stabilizing peptide that abrogates inhibition of NKG2A-expressing NK cells. Cell Rep. 38, 110503 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alrubayyi, A. et al. Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1. Sci. Rep. 13, 18994 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huot, N. et al. SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells. Nat. Immunol. 24, 2068–2079 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vietzen, H. et al. Torque teno viruses exhaust and imprint the human immune system via the HLA-E/NKG2A axis. Front. Immunol. 15, 1447980 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vietzen, H. et al. HLA-E-restricted immune responses are crucial for the control of EBV infections and the prevention of PTLD. Blood 141, 1560–1573 (2022).

    Article 
    PubMed Central 

    Google Scholar 

  • Vietzen, H., Hartenberger, S., Aberle, S. W. & Puchhammer-Stöckl, E. Dissection of the NKG2C NK cell response against Puumala orthohantavirus. PLoS Negl. Trop. Dis. 15, e0010006 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antrobus, R. D. et al. Virus-specific cytotoxic T lymphocytes differentially express cell-surface leukocyte immunoglobulin-like receptor-1, an inhibitory receptor for class I major histocompatibility complex molecules. J. Infect. Dis. 191, 1842–1853 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, H. L. et al. The role of MHC-E in T cell immunity is conserved among humans, rhesus macaques, and cynomolgus macaques. J. Immunol. 200, 49–60 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Picker, L. J., Hansen, S. G. & Lifson, J. D. New paradigms for HIV/AIDS vaccine development. Annu. Rev. Med. 63, 95–111 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pfeiffer, T. et al. Posoleucel, an allogeneic, off-the-shelf multivirus-specific T-cell therapy, for the treatment of refractory viral infections in the post-HCT setting. Clin. Cancer Res. 29, 324–330 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading