Riahi, K. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 3 (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009157926.005.
Clarke, L. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 6 (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009157926.008.
Kearns, J. et al. Developing a consistent database for regional geologic CO2 storage capacity worldwide. Energy Procedia 114, 4697–4709 (2017).
Google Scholar
Baines, S. et al. CO2 Storage Resource Catalogue—Cycle 3 Report (Oil and Gas Climate Initiative, 2022).
Damon, et al. An integrated approach to quantifying uncertainties in the remaining carbon budget. Commun. Earth Environ. 2, 7 (2021).
Google Scholar
Palazzo, et al. The Zero Emissions Commitment and climate stabilization. Front. Sci. 1, 1170744 (2023).
Google Scholar
Arias, P. A. et al. Technical Summary. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Metz, B., Davidson, O., de Coninck, H. & Loos, M. IPCC Special Report on Carbon Dioxide Capture and Storage (IPCC, 2005).
Matters Relating to the Global Stocktake under the Paris Agreement (UNFCCC, 2023).
The Global Status of CCS: 2024 (Global CCS Institute, 2024).
Gasos, A., Pini, R., Becattini, V., & Mazzotti, M. Enhanced oil recovery using carbon dioxide directly captured from air does not enable carbon-neutral oil. Preprint at EarthArXiv https://doi.org/10.31223/X55X4S (2025).
Selosse, S. & Ricci, O. Carbon capture and storage: lessons from a storage potential and localization analysis. Appl. Energy 188, 32–44 (2017).
Google Scholar
Steyn, M., Oglesby, J., Turan, G., Zapantis, A. & Gebremedhin, R. Global Status of CCS 2022 (Global CCS Institute, 2022).
Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).
Google Scholar
Schleussner, Carl-Friedrich, et al. Overconfidence in climate overshoot. Nature 634, 366–373 (2024).
Lane, J., Greig, C. & Garnett, A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nat. Clim. Change 11, 925–936 (2021).
Google Scholar
Grant, N., Hawkes, A., Mittal, S. & Gambhir, A. The policy implications of an uncertain carbon dioxide removal potential. Joule 5, 2593–2605 (2021).
Google Scholar
Hepple, R. P. & Benson, S. M. Geologic storage of carbon dioxide as a climate change mitigation strategy: performance requirements and the implications of surface seepage. Environ. Geol. 47, 576–585 (2005).
Google Scholar
Krevor, S. et al. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nat. Rev. Earth Environ. 4, 102–118 (2023).
Google Scholar
Benson, S. et al. in IPCC Special Report on Carbon Dioxide Capture and Storage (eds Metz, B. et al.) Ch. 5 (Cambridge Univ. Press, 2005).
Kazlou, T., Cherp, A. & Jewell, J. Feasible deployment of carbon capture and storage and the requirements of climate targets. Nat. Clim. Chang. 14, 1047–1055 (2024).
Romeiro, V. & Parente, V. Carbon capture and storage and the UNFCCC: recommendations to address trans-boundary issues. Low Carbon Econ. 03, 130–136 (2012).
Google Scholar
Stuart-Smith, R. F., Rajamani, L., Rogelj, J. & Wetzer, T. Legal limits to the use of CO2 removal. Science 382, 772–774 (2023).
Google Scholar
Wei, Y.-M. et al. A proposed global layout of carbon capture and storage in line with a 2 °C climate target. Nat. Clim. Change 11, 112–118 (2021).
Google Scholar
Zhang, Y., Jackson, C. & Krevor, S. The feasibility of reaching gigatonne scale CO2 storage by mid-century. Nat. Commun. 15, 6913 (2024).
Google Scholar
Goodman, A. et al. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. Int. J. Greenh. Gas Control 5, 952–965 (2011).
Google Scholar
Shindell, D. & Rogelj, J. Preserving carbon dioxide removal to serve critical needs. Nat. Clim. Change https://doi.org/10.1038/s41558-025-02251-y (2025).
Bachu, S. Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Convers. Manag. 41, 953–970 (2000).
Google Scholar
Kaldi, J. G. & Gibson-Poole, C. M. (eds.). Storage capacity estimation, site selection and characterisation for CO2 storage projects. Report No. RPT08-1001 (CO2CRC, 2008).
Raza, A. et al. A screening criterion for selection of suitable CO2 storage sites. J. Nat. Gas Sci. Eng. 28, 317–327 (2016).
Google Scholar
Nicol, A., Carne, R., Gerstenberger, M. & Christophersen, A. Induced seismicity and its implications for CO2 storage risk. Energy Procedia 4, 3699–3706 (2011).
Google Scholar
The severity of an earthquake. USGS https://pubs.usgs.gov/gip/earthq4/severitygip.html (1989).
Mehlhorn, J., Byrne, J. M., Kappler, A. & Planer-Friedrich, B. Time and temperature dependency of carbon dioxide triggered metal (loid) mobilization in soil. Appl. Geochem. 74, 122–137 (2016).
Google Scholar
Knauss, K. G., Johnson, J. W. & Steefel, C. I. Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2. Chem. Geol. 217, 339–350 (2005).
Google Scholar
Pianta, S., Rinscheid, A. & Weber, E. U. Carbon capture and storage in the United States: perceptions, preferences, and lessons for policy. Energy Policy 151, 112149 (2021).
Google Scholar
Arning, K. et al. Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany. Energy Policy 125, 235–249 (2019).
Google Scholar
Request for an Advisory Opinion Submitted by the Commission of Small Island States on Climate Change and International Law (International Tribunal for the Law of the Sea, 2024).
Garrett, J. & McCoy, S. Carbon capture and storage and the London Protocol: recent efforts to enable transboundary CO2 transfer. Energy Procedia 37, 7747–7755 (2013).
Google Scholar
Status of IMO Treaties (International Maritime Organization, 2024).
Larson, E., Li, Z. & Williams, R. in Global Energy Assessment: Toward A Sustainable Future Ch. 12 (Cambridge Univ. Press, 2012).
Muratori, M. et al. EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Climatic Change 163, 1621–1637 (2020).
Google Scholar
Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).
Google Scholar
Fuhrman, J. et al. The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards +1.5 °C and +2 °C futures. Environ. Res. Lett. 16, 114012 (2021).
Google Scholar
Strefler, J. et al. Carbon dioxide removal technologies are not born equal. Environ. Res. Lett. 16, 074021 (2021).
Google Scholar
Gidden, M. J. et al. Fairness and feasibility in deep mitigation pathways with novel carbon dioxide removal considering institutional capacity to mitigate. Environ. Res. Lett. 18, 074006 (2023).
Google Scholar
Gambhir, A. & Tavoni, M. Direct air carbon capture and sequestration: how it works and how it could contribute to climate-change mitigation. One Earth 1, 405–409 (2019).
Google Scholar
Grant, N., Gambhir, A., Mittal, S., Greig, C. & Köberle, A. C. Enhancing the realism of decarbonisation scenarios with practicable regional constraints on CO2 storage capacity. Int. J. Greenh. Gas Control 120, 103766 (2022).
Google Scholar
Smith, S. M. et al. The State of Carbon Dioxide Removal 1st edn (The State of Carbon Dioxide Removal, 2023); https://www.stateofcdr.org.
Crude Oil Production (Indicator) (OECD, 2024); https://doi.org/10.1787/4747b431-en.
den Elzen, M. G. J. et al. Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach. Mitig. Adapt. Strateg. Glob. Change 27, 33 (2022).
Google Scholar
Höhne, N. et al. Wave of net zero emission targets opens window to meeting the Paris Agreement. Nat. Clim. Change 11, 820–822 (2021).
Google Scholar
Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).
Google Scholar
IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Andreoni, P., Emmerling, J. & Tavoni, M. Inequality repercussions of financing negative emissions. Nat. Clim. Change 14, 48–54 (2024).
Google Scholar
Nemet, G. F. et al. Near-term deployment of novel carbon removal to facilitate longer-term deployment. Joule 7, 2653–2659 (2023).
Google Scholar
Khandoozi, S., Hazlett, R. & Fustic, M. A critical review of CO2 mineral trapping in sedimentary reservoirs—from theory to application: pertinent parameters, acceleration methods and evaluation workflow. Earth Sci. Rev. 244, 104515 (2023).
Google Scholar
Azzolina, N. A. et al. CO2 storage associated with CO2 enhanced oil recovery: a statistical analysis of historical operations. Int. J. Greenh. Gas Control 37, 384–397 (2015).
Google Scholar
Clark, D. E. et al. CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C. Geochim. Cosmochim. Acta 279, 45–66 (2020).
Google Scholar
McGrail, B., Spane, F., Sullivan, E., Bacon, D. & Hund, G. The Wallula basalt sequestration pilot project. Energy Procedia 4, 5653–5660 (2011).
Google Scholar
Cao, X., Li, Q., Xu, L. & Tan, Y. A review of in situ carbon mineralization in basalt. J. Rock Mech. Geotech. Eng. https://doi.org/10.1016/j.jrmge.2023.11.010 (2023).
Mace, M. J., Fyson, C. L., Schaeffer, M. & Hare, W. L. Large-scale carbon dioxide removal to meet the 1.5 °C limit: key governance gaps, challenges and priority responses. Glob. Policy 12, 67–81 (2021).
Google Scholar
Medvecky, F., Lacey, J. & Ashworth, P. Examining the role of carbon capture and storage through an ethical lens. Sci. Eng. Ethics 20, 1111–1128 (2014).
Google Scholar
Fyson, C. L., Baur, S., Gidden, M. & Schleussner, C.-F. Fair-share carbon dioxide removal increases major emitter responsibility. Nat. Clim. Change 10, 836–841 (2020).
Google Scholar
Ringrose, P. S. & Meckel, T. A. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions. Sci. Rep. 9, 17944 (2019).
Google Scholar
Zickfeld, K., Azevedo, D., Mathesius, S. & Matthews, H. D. Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11, 613–617 (2021).
Google Scholar
Gütschow, J. et al. The PRIMAP-hist national historical emissions time series. Earth Syst. Sci. Data 8, 571–603 (2016).
Google Scholar
Furre, A.-K., Eiken, O., Alnes, H., Vevatne, J. N. & Kiær, A. F. 20 years of monitoring CO2-injection at Sleipner. Energy Procedia 114, 3916–3926 (2017).
Google Scholar
Benedictus, T. et al. Long Term Integrity of CO2 Storage—Well Abandonment (IEAGHG, 2009).
Evenick, J. C. Glimpses into Earth’s history using a revised global sedimentary basin map. Earth Sci. Rev. 215, 103564 (2021).
Google Scholar
Bradshaw, J. et al. The potential for geological sequestration of CO2 in Australia: preliminary findings and implications for new gas field development. APPEA J. 42, 25–46 (2002).
Google Scholar
Development of Storage Coefficients for CO2 Storage in Deep Saline Formations (IEAGHG, 2009).
Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1. 0—a 1-degree global model of Earth’s crust. Geophys. Res. Abstr. 15, 2658 (2013).
Szulczewski, M. L., MacMinn, C. W., Herzog, H. J. & Juanes, R. Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc. Natl Acad. Sci. USA 109, 5185–5189 (2012).
Google Scholar
Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2024).
Maritime Boundaries Geodatabase (Flanders Marine Institute, 2023); https://doi.org/10.14284/628.
Michie, E. A. H. & Braathen, A. How displacement analysis may aid fault risking strategies for CO2 storage. Basin Res. 36, e12807 (2024).
Google Scholar
Johnson, K. et al. Global seismic hazard map. Zenodo https://doi.org/10.5281/zenodo.8409647 (2023).
Wald, D. J., Quitoriano, V., Heaton, T. H. & Kanamori, H. Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthq. Spectra 15, 557–564 (1999).
Google Scholar
Damen, K., Faaij, A. & Turkenburg, W. Health, safety and environmental risks of underground CO2 storage—overview of mechanisms and current knowledge. Climatic Change 74, 289–318 (2006).
Google Scholar
Gao, J. & O’Neill, B. C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 11, 2302 (2020).
Google Scholar
O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change https://doi.org/10.1016/j.gloenvcha.2015.01.004 (2015).
Bruhn, C. H. et al. Campos and Santos basins: 40 years of reservoir characterization and management of shallow-to ultra-deep water, post-and pre-salt reservoirs-Historical overview and future challenges. In Offshore Technology Conference Brasil D011S006R001 (OTC, 2017).
Beyer, J., Trannum, H. C., Bakke, T., Hodson, P. V. & Collier, T. K. Environmental effects of the Deepwater Horizon oil spill: a review. Mar. Pollut. Bull. 110, 28–51 (2016).
Google Scholar
Global Oil and Gas Extraction Tracker (Global Energy Monitor, 2025).
Omara, M. et al. Developing a spatially explicit global oil and gas infrastructure database for characterizing methane emission sources at high resolution. Earth Syst. Sci. Data 15, 3761–3790 (2023).
Google Scholar
Sabbatino, M. et al. Global Oil & Gas Features Database (National Energy Technology Laboratory, 2017); https://doi.org/10.18141/1427300.
Global Oil and Gas Extraction Tracker (Global Energy Monitor, 2024).
Zhang, G. et al. Giant discoveries of oil and gas fields in global deepwaters in the past 40 years and the prospect of exploration. J. Nat. Gas Geosci. 4, 1–28 (2019).
Google Scholar
Project, T. T., De Reuck, K., Angus, S. & Armstrong, B. International Thermodynamic Tables of the Fluid State: Carbon Dioxide (Pergamon Press, 1976).
Hasan, M. M., Alam, M. W., Jian, H. & Chowdhury, K. M. A. Protracted maritime boundary disputes and maritime laws. J. Int. Marit. Saf. Environ. Aff. Shipp. 2, 89–96 (2019).
Byers, E. et al. AR6 scenarios database. Zenodo https://doi.org/10.5281/zenodo.5886912 (2022).
Huppmann, D. et al. pyam: analysis and visualisation of integrated assessment and macro-energy scenarios. Open Res. Eur. 1, 74 (2021).
Google Scholar
Gidden, M. & Joshi, S. Supplemental Data for Gidden et al 2025: a prudent planetary limit for geologic carbon storage. Zenodo https://doi.org/10.5281/zenodo.15657542 (2025).