Altered striosome-matrix distribution and activity of striatal cholinergic interneurons in a model of autism-linked repetitive behaviors

  • Diagnostic and statistical manual of mental disorders (DSM-5). 5th ed., Arlington (VA): American Psychiatric Association; 2013.

  • Fuccillo MV. Striatal circuits as a common node for autism pathophysiology. Front Neurosci. 2016;10:27.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res. 2019;98:2130–47.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rapanelli M, Frick LR, Pittenger C. The role of interneurons in autism and tourette syndrome. Trends Neurosci. 2017;40:397–407.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Contractor A, Ethell IM, Portera-Cailliau C. Cortical interneurons in autism. Nat Neurosci. 2021;24:1648–59.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridley RM. The psychology of perserverative and stereotyped behaviour. Prog Neurobiol. 1994;44:221–31.

    PubMed 

    Google Scholar 

  • Jutla A, Foss-Feig J, Veenstra-VanderWeele J. Autism spectrum disorder and schizophrenia: an updated conceptual review. Autism Res. 2022;15:384–412.

    PubMed 

    Google Scholar 

  • Figee M, Pattij T, Willuhn I, Luigjes J, van den Brink W, Goudriaan A, et al. Compulsivity in obsessive-compulsive disorder and addictions. Eur Neuropsychopharmacol. 2016;26:856–68.

    PubMed 

    Google Scholar 

  • Gerdeman GL, Partridge JG, Lupica CR, Lovinger DM. It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci. 2003;26:184–92.

    PubMed 

    Google Scholar 

  • Burton CL, Longaretti A, Zlatanovic A, Gomes GM, Tonini R. Striatal insights: a cellular and molecular perspective on repetitive behaviors in pathology. Front Cell Neurosci. 2024;18:1386715.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kataoka Y, Kalanithi PS, Grantz H, Schwartz ML, Saper C, Leckman JF, et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol. 2010;518:277–91.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lennington JB, Coppola G, Kataoka-Sasaki Y, Fernandez TV, Palejev D, Li Y, et al. Transcriptome analysis of the human striatum in tourette syndrome. Biol Psychiatry. 2016;79:372–82.

    PubMed 

    Google Scholar 

  • Xu M, Kobets A, Du JC, Lennington J, Li L, Banasr M, et al. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proc Natl Acad Sci USA. 2015;112:893–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martos YV, Braz BY, Beccaria JP, Murer MG, Belforte JE. Compulsive social behavior emerges after selective ablation of striatal cholinergic interneurons. J Neurosci. 2017;37:2849–58.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu J, Liu RJ, Fahey S, Frick L, Leckman J, Vaccarino F, et al. Antibodies from children with PANDAS bind specifically to striatal cholinergic interneurons and alter their activity. Am J Psychiatry. 2021;178:48–64.

    PubMed 

    Google Scholar 

  • Aliane V, Perez S, Bohren Y, Deniau JM, Kemel ML. Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies. Brain. 2011;134:110–8.

    PubMed 

    Google Scholar 

  • Crittenden JR, Lacey CJ, Weng FJ, Garrison CE, Gibson DJ, Lin Y, et al. Striatal cholinergic interneurons modulate spike-timing in striosomes and matrix by an amphetamine-sensitive mechanism. Front Neuroanat. 2017;11:20.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prado VF, Janickova H, Al-Onaizi MA, Prado MA. Cholinergic circuits in cognitive flexibility. Neuroscience. 2017;345:130–41.

    PubMed 

    Google Scholar 

  • Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci. 2019;49:604–22.

    PubMed 

    Google Scholar 

  • Apicella P. The role of the intrinsic cholinergic system of the striatum: what have we learned from TAN recordings in behaving animals? Neuroscience. 2017;360:81–94.

    PubMed 

    Google Scholar 

  • Goldberg JA, Wilson CJ. The cholinergic interneurons of the striatum: intrinsic properties underlie multiple discharge patterns. In: Steiner H, Tseng KY, editors. Handbook of basal ganglia structure and function. London (UK): Academic Press; 2010, pp 133–49.

  • Ahmed NY, Knowles R, Dehorter N. New insights into cholinergic neuron diversity. Front Mol Neurosci. 2019;12:204.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G. Acetylcholine-mediated modulation of striatal function. Trends Neurosci. 2000;23:120–6.

    PubMed 

    Google Scholar 

  • Brimblecombe KR, Cragg SJ. The striosome and matrix compartments of the striatum: a path through the labyrinth from neurochemistry toward function. ACS Chem Neurosci. 2017;8:235–42.

    PubMed 

    Google Scholar 

  • Kawaguchi Y. Neostriatal cell subtypes and their functional roles. Neurosci Res. 1997;27:1–8.

    PubMed 

    Google Scholar 

  • Gerfen CR. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 1992;15:133–9.

    PubMed 

    Google Scholar 

  • Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat. 2011;5:59.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Graybiel AM, Matsushima A. Striosomes and matrisomes: scaffolds for dynamic coupling of volition and action. Annu Rev Neurosci. 2023;46:359–80.

    PubMed 

    Google Scholar 

  • Lazaridis I, Crittenden JR, Ahn G, Hirokane K, Wickersham IR, Yoshida T, et al. Striosomes control dopamine via dual pathways paralleling canonical basal ganglia circuits. Curr Biol. 2024;34:5263–83.e8.

    PubMed 

    Google Scholar 

  • Kuo HY, Liu FC. Pathological alterations in striatal compartments in the human brain of autism spectrum disorder. Mol Brain. 2020;13:83.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuo HY, Liu FC. Valproic acid induces aberrant development of striatal compartments and corticostriatal pathways in a mouse model of autism spectrum disorder. FASEB J. 2017;31:4458–71.

    PubMed 

    Google Scholar 

  • Murray RC, Logan MC, Horner KA. Striatal patch compartment lesions reduce stereotypy following repeated cocaine administration. Brain Res. 2015;1618:286–98.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Caubit X, Gubellini P, Andrieux J, Roubertoux PL, Metwaly M, Jacq B, et al. TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nat Genet. 2016;48:1359–69.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Caubit X, Gubellini P, Roubertoux PL, Carlier M, Molitor J, Chabbert D, et al. Targeted Tshz3 deletion in corticostriatal circuit components segregates core autistic behaviors. Transl Psychiatry. 2022;12:106.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Caubit X, Arbeille E, Chabbert D, Desprez F, Messak I, Fatmi A, et al. Camk2a-Cre and Tshz3 expression in mouse striatal cholinergic interneurons: implications for autism spectrum disorder. Front Genet. 2021;12:683959.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chabbert D, Caubit X, Roubertoux PL, Carlier M, Habermann B, Jacq B, et al. Postnatal Tshz3 deletion drives altered corticostriatal function and autism spectrum disorder-like behavior. Biol Psychiatry. 2019;86:274–85.

    PubMed 

    Google Scholar 

  • Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature. 2011;478:483–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Roubertoux PL, Tordjman S, Caubit X, di Cristopharo J, Ghata A, Fasano L, et al. Construct validity and cross validity of a test battery modeling Autism Spectrum Disorder (ASD) in mice. Behav Genet. 2020;50:26–40.

    PubMed 

    Google Scholar 

  • Knowles R, Dehorter N, Ellender T. From progenitors to progeny: shaping striatal circuit development and function. J Neurosci. 2021;41:9483–502.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marin O, Anderson SA, Rubenstein JL. Origin and molecular specification of striatal interneurons. J Neurosci. 2000;20:6063–76.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pappas SS, Li J, LeWitt TM, Kim JK, Monani UR, Dauer WT. A cell autonomous torsinA requirement for cholinergic neuron survival and motor control. Elife. 2018;7:e36691.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopes R, Verhey van Wijk N, Neves G, Pachnis V. Transcription factor LIM homeobox 7 (Lhx7) maintains subtype identity of cholinergic interneurons in the mammalian striatum. Proc Natl Acad Sci USA. 2012;109:3119–24.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Furusho M, Ono K, Takebayashi H, Masahira N, Kagawa T, Ikeda K, et al. Involvement of the Olig2 transcription factor in cholinergic neuron development of the basal forebrain. Dev Biol. 2006;293:348–57.

    PubMed 

    Google Scholar 

  • Caubit X, Tiveron MC, Cremer H, Fasano L. Expression patterns of the three Teashirt-related genes define specific boundaries in the developing and postnatal mouse forebrain. J Comp Neurol. 2005;486:76–88.

    PubMed 

    Google Scholar 

  • van Vulpen EH, van der Kooy D. Striatal cholinergic interneurons: birthdates predict compartmental localization. Brain Res Dev Brain Res. 1998;109:51–8.

    PubMed 

    Google Scholar 

  • Balleine BW, Liljeholm M, Ostlund SB. The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res. 2009;199:43–52.

    PubMed 

    Google Scholar 

  • Rusu SI, Pennartz CMA. Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized cortico-basal ganglia systems. Hippocampus. 2020;30:73–98.

    PubMed 

    Google Scholar 

  • Song MR, Lee SW. Rethinking dopamine-guided action sequence learning. Eur J Neurosci. 2024;60:3447–65.

    PubMed 

    Google Scholar 

  • Arlotta P, Molyneaux BJ, Jabaudon D, Yoshida Y, Macklis JD. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci. 2008;28:622–32.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson CJ. The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron. 2005;45:575–85.

    PubMed 

    Google Scholar 

  • Zhao Z, Zhang K, Liu X, Yan H, Ma X, Zhang S, et al. Involvement of HCN channel in muscarinic inhibitory action on tonic firing of dorsolateral striatal cholinergic interneurons. Front Cell Neurosci. 2016;10:71.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bennett BD, Wilson CJ. Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci. 1999;19:5586–96.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson CJ, Chang HT, Kitai ST. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci. 1990;10:508–19.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prado VF, Roy A, Kolisnyk B, Gros R, Prado MA. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J. 2013;450:265–74.

    PubMed 

    Google Scholar 

  • Chen E, Lallai V, Sherafat Y, Grimes NP, Pushkin AN, Fowler JP, et al. Altered baseline and nicotine-mediated behavioral and cholinergic profiles in ChAT-Cre mouse lines. J Neurosci. 2018;38:2177–88.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirsch EC, Graybiel AM, Hersh LB, Duyckaerts C, Agid Y. Striosomes and extrastriosomal matrix contain different amounts of immunoreactive choline acetyltransferase in the human striatum. Neurosci Lett. 1989;96:145–50.

    PubMed 

    Google Scholar 

  • Graybiel AM, Baughman RW, Eckenstein F. Cholinergic neuropil of the striatum observes striosomal boundaries. Nature. 1986;323:625–7.

    PubMed 

    Google Scholar 

  • Van Zandt M, Flanagan D, Pittenger C. Sex differences in the distribution and density of regulatory interneurons in the striatum. Front Cell Neurosci. 2024;18:1415015.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Unal B, Ibanez-Sandoval O, Shah F, Abercrombie ED, Tepper JM. Distribution of tyrosine hydroxylase-expressing interneurons with respect to anatomical organization of the neostriatum. Front Syst Neurosci. 2011;5:41.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Almey A, Filardo EJ, Milner TA, Brake WG. Estrogen receptors are found in glia and at extranuclear neuronal sites in the dorsal striatum of female rats: evidence for cholinergic but not dopaminergic colocalization. Endocrinology. 2012;153:5373–83.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kovesdi E, Udvaracz I, Kecskes A, Szocs S, Farkas S, Faludi P, et al. 17beta-estradiol does not have a direct effect on the function of striatal cholinergic interneurons in adult mice in vitro. Front Endocrinol (Lausanne). 2022;13:993552.

    PubMed 

    Google Scholar 

  • van der Kooy D, Fishell G. Neuronal birthdate underlies the development of striatal compartments. Brain Res. 1987;401:155–61.

    PubMed 

    Google Scholar 

  • Song DD, Harlan RE. Genesis and migration patterns of neurons forming the patch and matrix compartments of the rat striatum. Brain Res Dev Brain Res. 1994;83:233–45.

    PubMed 

    Google Scholar 

  • Graybiel AM, Hickey TL. Chemospecificity of ontogenetic units in the striatum: demonstration by combining [3H]thymidine neuronography and histochemical staining. Proc Natl Acad Sci USA. 1982;79:198–202.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lebouc M, Richard Q, Garret M, Baufreton J. Striatal circuit development and its alterations in Huntington’s disease. Neurobiol Dis. 2020;145:105076.

    PubMed 

    Google Scholar 

  • Chen L, Chatterjee M, Li JY. The mouse homeobox gene Gbx2 is required for the development of cholinergic interneurons in the striatum. J Neurosci. 2010;30:14824–34.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Poppi LA, Ho-Nguyen KT, Shi A, Daut CT, Tischfield MA. Recurrent implication of striatal cholinergic interneurons in a range of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Cells. 2021;10:907.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Crittenden JR, Lacey CJ, Lee T, Bowden HA, Graybiel AM. Severe drug-induced repetitive behaviors and striatal overexpression of VAChT in ChAT-ChR2-EYFP BAC transgenic mice. Front Neural Circuits. 2014;8:57.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kubota Y, Kawaguchi Y. Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. J Comp Neurol. 1993;332:499–513.

    PubMed 

    Google Scholar 

  • Johnston JG, Gerfen CR, Haber SN, van der Kooy D. Mechanisms of striatal pattern formation: conservation of mammalian compartmentalization. Brain Res Dev Brain Res. 1990;57:93–102.

    PubMed 

    Google Scholar 

  • Lee H, Leamey CA, Sawatari A. Rapid reversal of chondroitin sulfate proteoglycan associated staining in subcompartments of mouse neostriatum during the emergence of behaviour. PLoS One. 2008;3:e3020.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martone ME, Young SJ, Armstrong DM, Groves PM. The distribution of cholinergic perikarya with respect to enkephalin-rich patches in the caudate nucleus of the adult cat. J Chem Neuroanat. 1994;8:47–59.

    PubMed 

    Google Scholar 

  • Bennett BD, Callaway JC, Wilson CJ. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci. 2000;20:8493–503.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lozovaya N, Eftekhari S, Cloarec R, Gouty-Colomer LA, Dufour A, Riffault B, et al. GABAergic inhibition in dual-transmission cholinergic and GABAergic striatal interneurons is abolished in Parkinson disease. Nat Commun. 2018;9:1422.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawaguchi Y. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci. 1993;13:4908–23.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marotta R, Risoleo MC, Messina G, Parisi L, Carotenuto M, Vetri L, et al. The neurochemistry of autism. Brain Sci. 2020;10:163.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karvat G, Kimchi T. Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology. 2014;39:831–40.

    PubMed 

    Google Scholar 

  • Rapanelli M, Frick LR, Xu M, Groman SM, Jindachomthong K, Tamamaki N, et al. Targeted interneuron depletion in the dorsal striatum produces autism-like behavioral abnormalities in male but not female mice. Biol Psychiatry. 2017;82:194–203.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Athnaiel O, Job GA, Ocampo R, Teneqexhi P, Messer WS, Ragozzino ME. Effects of the partial M1 muscarinic cholinergic receptor agonist CDD-0102A on stereotyped motor behaviors and reversal learning in the BTBR mouse model of autism. Int J Neuropsychopharmacol. 2022;25:64–74.

    PubMed 

    Google Scholar 

  • Ferhat AT, Verpy E, Biton A, Forget B, De Chaumont F, Mueller F, et al. Excessive self-grooming, gene dysregulation and imbalance between the striosome and matrix compartments in the striatum of Shank3 mutant mice. Front Mol Neurosci. 2023;16:1139118.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Canales JJ, Graybiel AM. A measure of striatal function predicts motor stereotypy. Nat Neurosci. 2000;3:377–83.

    PubMed 

    Google Scholar 

  • Sako W, Morigaki R, Nagahiro S, Kaji R, Goto S. Olfactory type G-protein alpha subunit in striosome-matrix dopamine systems in adult mice. Neuroscience. 2010;170:497–502.

    PubMed 

    Google Scholar 

  • Saka E, Goodrich C, Harlan P, Madras BK, Graybiel AM. Repetitive behaviors in monkeys are linked to specific striatal activation patterns. J Neurosci. 2004;24:7557–65.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peter Z, Oliphant ME, Fernandez TV. Motor stereotypies: a pathophysiological review. Front Neurosci. 2017;11:171.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Magno L, Barry C, Schmidt-Hieber C, Theodotou P, Hausser M, Kessaris N. NKX2-1 is required in the embryonic septum for cholinergic system development, learning, and memory. Cell Rep. 2017;20:1572–84.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fragkouli A, van Wijk NV, Lopes R, Kessaris N, Pachnis V. LIM homeodomain transcription factor-dependent specification of bipotential MGE progenitors into cholinergic and GABAergic striatal interneurons. Development. 2009;136:3841–51.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sreenivasan V, Serafeimidou-Pouliou E, Exposito-Alonso D, Bercsenyi K, Bernard C, Bae SE, et al. Input-specific control of interneuron numbers in nascent striatal networks. Proc Natl Acad Sci USA. 2022;119:e2118430119.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fino E, Vandecasteele M, Perez S, Saudou F, Venance L. Region-specific and state-dependent action of striatal GABAergic interneurons. Nat Commun. 2018;9:3339.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi SJ, Ma TC, Ding Y, Cheung T, Joshi N, Sulzer D, et al. Alterations in the intrinsic properties of striatal cholinergic interneurons after dopamine lesion and chronic L-DOPA. Elife. 2020;9:e56920.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng J, Umschweif G, Leung J, Sagi Y, Greengard P. HCN2 Channels in Cholinergic Interneurons of Nucleus Accumbens Shell Regulate Depressive Behaviors. Neuron. 2019;101:662–72.e5.

    PubMed 

    Google Scholar 

  • Ahmed NY, Knowles R, Liu L, Yan Y, Li X, Schumann U, et al. Developmental deficits of MGE-derived interneurons in the Cntnap2 knockout mouse model of autism spectrum disorder. Front Cell Dev Biol. 2023;11:1112062.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonsi P, Cuomo D, Martella G, Madeo G, Schirinzi T, Puglisi F, et al. Centrality of striatal cholinergic transmission in Basal Ganglia function. Front Neuroanat. 2011;5:6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gertler TS, Chan CS, Surmeier DJ. Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci. 2008;28:10814–24.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Inoue R, Suzuki T, Nishimura K, Miura M. Nicotinic acetylcholine receptor-mediated GABAergic inputs to cholinergic interneurons in the striosomes and the matrix compartments of the mouse striatum. Neuropharmacology. 2016;105:318–28.

    PubMed 

    Google Scholar 

  • Friedman A, Hueske E, Drammis SM, Toro Arana SE, Nelson ED, Carter CW, et al. Striosomes mediate value-based learning vulnerable in age and a Huntington’s disease model. Cell. 2020;183:918–34.e49.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Caubit X, Lye CM, Martin E, Core N, Long DA, Vola C, et al. Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development. 2008;135:3301–10.

    PubMed 

    Google Scholar 

  • Mao X, Fujiwara Y, Orkin SH. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci USA. 1999;96:5037–42.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    PubMed 

    Google Scholar 

  • Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 2011;13:195–204.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 1995;18:527–35.

    PubMed 

    Google Scholar 

  • Haghdoust H, Janahmadi M, Behzadi G. Physiological role of dendrotoxin-sensitive K+ channels in the rat cerebellar Purkinje neurons. Physiol Res. 2007;56:807–13.

    PubMed 

    Google Scholar 

  • Maisano X, Litvina E, Tagliatela S, Aaron GB, Grabel LB, Naegele JR. Differentiation and functional incorporation of embryonic stem cell-derived GABAergic interneurons in the dentate gyrus of mice with temporal lobe epilepsy. J Neurosci. 2012;32:46–61.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates, 2nd Edition. ed., San Diego (CA): Academic Press; 2001.

  • Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018;18:91–3.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading