Implicit neural representations for accurate estimation of the Standard Model of white matter

  • Alexander, D. C., Dyrby, T. B., Nilsson, M. & Zhang, H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed. 32, 1–26 (2019).

    Google Scholar 

  • Lampinen, B. et al. Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding. NeuroImage 282, 120338 (2023).

    Google Scholar 

  • Jelescu, I. O., Palombo, M., Bagnato, F. & Schilling, K. G. Challenges for biophysical modeling of microstructure. J. Neurosci. Methods 344, 108861 (2020).

    Google Scholar 

  • Novikov, D. S., Fieremans, E., Jespersen, S. N. & Kiselev, V. G. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. NMR Biomed. 32, 1–53 (2019).

    Google Scholar 

  • Westin, C.-F. et al. Measurement tensors in diffusion mri: Generalizing the concept of diffusion encoding. In Golland, P., Hata, N., Barillot, C., Hornegger, J. & Howe, R. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, 209–216 (Springer International Publishing, Cham, 2014).

  • Alotaibi, A. et al. Investigating microstructural changes in white matter in multiple sclerosis: A systematic review and meta-analysis of neurite orientation dispersion and density imaging. Brain Sci. 11, 1151 (2021).

    Google Scholar 

  • Parker, T. D. et al. Cortical microstructure in young-onset alzheimer’s disease using neurite orientation dispersion and density imaging. Hum. Brain Mapp. 39, 3005–3017 (2018).

    Google Scholar 

  • Kim, D.-H., Laun, D. H., Kamesh, N. B. et al. Diffusion microstructure imaging of the substantia nigra in Parkinson’s disease using mean apparent propagator MRI. NeuroImage Clin. 12, 451–459 (2016).

    Google Scholar 

  • Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. Noddi: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61, 1000–1016 (2012).

    Google Scholar 

  • Tournier, J.-D., Calamante, F. & Connelly, A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007).

    Google Scholar 

  • Jelescu, I. O., Veraart, J., Fieremans, E. & Novikov, D. S. Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue. NMR Biomed. 29, 33–47 (2016).

    Google Scholar 

  • Tournier, J. D., Calamante, F. & Connelly, A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007).

    Google Scholar 

  • Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A. & Sijbers, J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014).

    Google Scholar 

  • Novikov, D. S., Veraart, J., Jelescu, I. O. & Fieremans, E. Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI. NeuroImage 174, 518–538 (2018).

    Google Scholar 

  • Coelho, S. et al. Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems. NeuroImage257 (2022).

  • Reisert, M., Kellner, E., Dhital, B., Hennig, J. & Kiselev, V. G. Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach. NeuroImage 147, 964–975 (2017).

    Google Scholar 

  • Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D. & Alexander, D. C. Multi-compartment microscopic diffusion imaging. NeuroImage 139, 346–359 (2016).

    Google Scholar 

  • de Almeida Martins, J. P. et al. Neural networks for parameter estimation in microstructural MRI: Application to a diffusion-relaxation model of white matter. NeuroImage 244 (2021).

  • Diao, Y. & Jelescu, I. Parameter estimation for wmti-watson model of white matter using encoder-decoder recurrent neural network. Magn. Reson. Med. 89, 1193–1206 (2023).

    Google Scholar 

  • Liao, Y. et al. Mapping tissue microstructure of brain white matter in vivo in health and disease using diffusion MRI. Imaging Neurosci. 2, 1–17 (2024).

    Google Scholar 

  • Gyori, N. G., Palombo, M., Clark, C. A., Zhang, H. & Alexander, D. C. Training data distribution significantly impacts the estimation of tissue microstructure with machine learning. Magn. Reson. Med. 87, 932–947 (2022).

    Google Scholar 

  • Hendriks, T., Vilanova, A. & Chamberland, M. Neural spherical harmonics for structurally coherent continuous representation of diffusion MRI signal. In International Workshop on Computational Diffusion MRI, 1–12 (Springer, 2023).

  • Consagra, W., Ning, L. & Rathi, Y. Neural orientation distribution fields for estimation and uncertainty quantification in diffusion MRI. Med. Image Anal. 93, 103105 (2024).

    Google Scholar 

  • Hendriks, T., Vilanova, A. & Chamberland, M. Implicit neural representation of multi-shell constrained spherical deconvolution for continuous modeling of diffusion MRI. Imaging Neuroscience 3, imag_a_00501 (2025).

  • Girard, G. et al. Ax t ract: Toward microstructure-informed tractography. Hum. Brain Mapp. 38, 5485–5500 (2017).

    Google Scholar 

  • Reisert, M., Kiselev, V. G., Dihtal, B., Kellner, E. & Novikov, D. S. Mesoft: Unifying diffusion modelling and fiber tracking. In Golland, P., Hata, N., Barillot, C., Hornegger, J. & Howe, R. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, 201–208 (Springer International Publishing, Cham, 2014).

  • París, G. et al. Thermal noise lowers the accuracy of rotationally invariant harmonics of diffusion MRI data and their robustness to experimental variations. Magn. Reson. Med. https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.70035 (2025).

  • Bammer, R. et al. Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion-weighted imaging. Magn. Reson. Med. 50, 560–569 (2003).

    Google Scholar 

  • Daducci, A. et al. Accelerated microstructure imaging via convex optimization (amico) from diffusion MRI data. NeuroImage 105, 32–44 (2015).

    Google Scholar 

  • Harms, R., Fritz, F., Tobisch, A., Goebel, R. & Roebroeck, A. Robust and fast nonlinear optimization of diffusion MRI microstructure models. NeuroImage 155, 82–96 (2017).

    Google Scholar 

  • Mesri, H. Y., David, S., Viergever, M. A. & Leemans, A. The adverse effect of gradient nonlinearities on diffusion MRI: From voxels to group studies. NeuroImage 205, 116127 (2020).

    Google Scholar 

  • Mohammadi, S. et al. The effect of local perturbation fields on human DTI: Characterisation, measurement and correction. NeuroImage 60, 562–570 (2012).

    Google Scholar 

  • Morez, J., Sijbers, J., Vanhevel, F. & Jeurissen, B. Constrained spherical deconvolution of nonspherically sampled diffusion MRI data. Hum. Brain Mapp. 42, 521–538 (2021).

    Google Scholar 

  • Jones, D. K. et al. Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI (2018).

  • Coelho, S. et al. What if each voxel were measured with a different diffusion protocol? https://arxiv.org/abs/2506.22650 2506.22650 (2025).

  • Eichner, C. et al. Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast. NeuroImage 122, 373–384 (2015).

    Google Scholar 

  • Koay, C. G., Özarslan, E. & Pierpaoli, C. Probabilistic identification and estimation of noise (PIESNO): A self-consistent approach and its applications in MRI. J. Magn. Reson. 199, 94–103 (2009).

    Google Scholar 

  • Álvaro, P. et al. Optimisation of quantitative brain diffusion-relaxation MRI acquisition protocols with physics-informed machine learning. Med. Image Anal. 94, 103134 (2024).

    Google Scholar 

  • Parker, C. et al. Rician likelihood loss for quantitative MRI with self-supervised deep learning. NMR Biomed. 38, e70136 (2025).

    Google Scholar 

  • Kunz, N., da Silva, A. R. & Jelescu, I. O. Intra- and extra-axonal axial diffusivities in the white matter: Which one is faster? NeuroImage 181, 314–322 (2018).

    Google Scholar 

  • Dhital, B., Reisert, M., Kellner, E. & Kiselev, V. G. Intra-axonal diffusivity in brain white matter. NeuroImage 189, 543–550 (2019).

    Google Scholar 

  • Coelho, S., Pozo, J. M., Jespersen, S. N., Jones, D. K. & Frangi, A. F. Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding. Magn. Reson. Med. 82, 395–410 (2019).

    Google Scholar 

  • Consagra, W., Ning, L. & Rathi, Y. A deep learning approach to multi-fiber parameter estimation and uncertainty quantification in diffusion MRI. Med. Image Anal. 103537 (2025).

  • Jallais, M. & Palombo, M. Introducing μguide for quantitative imaging via generalized uncertainty-driven inference using deep learning. eLife 13, RP101069 (2024).

    Google Scholar 

  • Tax, C. M. et al. Measuring compartmental t2-orientational dependence in human brain white matter using a tiltable RF coil and diffusion-t2 correlation MRI. Neuroimage 236, 117967 (2021).

    Google Scholar 

  • Veraart, J., Novikov, D. S. & Fieremans, E. Te dependent diffusion imaging (teddi) distinguishes between compartmental t2 relaxation times. NeuroImage 182, 360–369 (2018).

    Google Scholar 

  • Palombo, M. et al. Sandi: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. NeuroImage 215, 116835 (2020).

    Google Scholar 

  • Daducci, A., Dal Palù, A., Lemkaddem, A. & Thiran, J.-P. Commit: Convex optimization modeling for microstructure informed tractography. IEEE Trans. Med. Imaging 34, 246–257 (2015).

    Google Scholar 

  • Li, Z. et al. DIMOND: DIffusion Model OptimizatioN with Deep Learning. Adv. Sci. (2024).

  • Tancik, M. et al. Learned initializations for optimizing coordinate-based neural representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2846–2855 (2021).

  • Wang, Y. et al. Scarf: Scalable continual learning framework for memory-efficient multiple neural radiance fields. In Computer graphics forum, vol. 43, e15255 (Wiley Online Library, 2024).

  • Dwedari, M. M. et al. Estimating neural orientation distribution fields on high-resolution diffusion MRI scans. In Linguraru, M. G. et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2024, 307–317 (Springer Nature Switzerland, Cham,2024).

  • Spears, T. & Fletcher, P. T. Learning spatially-continuous fiber orientation functions. In 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1–5 (IEEE, 2024).

  • Jespersen, S. N., Kroenke, C. D., Østergaard, L., Ackerman, J. J. & Yablonskiy, D. A. Modeling dendrite density from magnetic resonance diffusion measurements. NeuroImage 34, 1473–1486 (2007).

    Google Scholar 

  • Kroenke, C. D., Ackerman, J. J. & Yablonskiy, D. A. On the nature of the Na+ diffusion attenuated MR signal in the central nervous system. Magn. Reson. Med. 52, 1052–1059 (2004).

    Google Scholar 

  • Fieremans, E., Jensen, J. H. & Helpern, J. A. White matter characterization with diffusional kurtosis imaging. NeuroImage 58, 177–188 (2011).

    Google Scholar 

  • Basser, P. J., Mattiello, J. & LeBihan, D. Mr diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    Google Scholar 

  • Lampinen, B. et al. Towards unconstrained compartment modeling in white matter using diffusion-relaxation MRI with tensor-valued diffusion encoding. Magn. Reson. Med. 84, 1605–1623 (2020).

    Google Scholar 

  • Tancik, M. et al. Fourier features let networks learn high-frequency functions in low-dimensional domains. Adv. Neural Inf. Process. Syst. 33, 7537–7547 (2020).

    Google Scholar 

  • Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C. & Garcia, R. Incorporating second-order functional knowledge for better option pricing. Advances in Neural Inform. Process. Syst. 13 (2000).

  • Tournier, J.-D. et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202, 116137 (2019).

    Google Scholar 

  • Gómez, P., Toftevaag, H. H. & Meoni, G. torchquad: Numerical integration in arbitrary dimensions with PyTorch. J. Open Source Softw. 6, 3439 (2021).

    Google Scholar 

  • Veraart, J. et al. Denoising of diffusion MRI using random matrix theory. NeuroImage 142, 394–406 (2016).

    Google Scholar 

  • Tian, Q. et al. Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mt/m gradients. figshare. Collection https://doi.org/10.6084/m9.figshare.c.5315474.v1 (2022).

  • Tian, Q. et al. Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients. Sci. Data 9 (2022).

  • Garyfallidis, E. et al. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014).

    Google Scholar 

  • Fischl, B. Freesurfer. NeuroImage 62, 774–781 (2012).

    Google Scholar 

  • Sjölund, J. et al. Constrained optimization of gradient waveforms for generalized diffusion encoding. J. Magn. Reson. 261, 157–168 (2015).

    Google Scholar 

  • Kellner, E., Dhital, B., Kiselev, V. G. & Reisert, M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Reson. Med. 76, 1574–1581 (2016).

    Google Scholar 

  • Vos, S. B. et al. The importance of correcting for signal drift in diffusion MRI. Magn. Reson. Med. 77, 285–299 (2017).

    Google Scholar 

  • Nilsson, M., Szczepankiewicz, F., van Westen, D. & Hansson, O. Extrapolation-based references improve motion and eddy-current correction of high b-value DWI data: Application in Parkinson’s disease dementia. PLOS ONE 10, 1–22 (2015).

    Google Scholar 

  • Andersson, J. L., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20, 870–888 (2003).

    Google Scholar 

  • Hendriks, T. et al. Simulated DWI files for experiments of: Implicit neural representations for accurate estimation of the standard model of white matter https://doi.org/10.5281/zenodo.17092773 (2025).

  • Continue Reading