Bezek, L. B. et al. Effect of part size, displacement rate, and aging on compressive properties of elastomeric parts of different unit cell topologies formed by vat photopolymerization additive manufacturing. Polymers 16, 3166 (2024).
Yang, L. et al. Additive manufacturing of metal cellular structures: design and fabrication. Jom 67, 608–615 (2015).
Lin, H. et al. 3d printing of porous ceramics for enhanced thermal insulation properties. Adv. Sci. 12, 2412554 (2025).
Schaedler, T. A. et al. Designing metallic microlattices for energy absorber applications. Adv. Eng. Mater. 16, 276–283 (2014).
Schaedler, T. A. & Carter, W. B. Architected cellular materials. Annual Rev. Mater. Res. 46, 187–210 (2016).
Boursier Niutta, C., Ciardiello, R. & Tridello, A. Experimental and numerical investigation of a lattice structure for energy absorption: application to the design of an automotive crash absorber. Polymers 14, 1116 (2022).
Mohsenizadeh, M., Gasbarri, F., Munther, M., Beheshti, A. & Davami, K. Additively-manufactured lightweight metamaterials for energy absorption. Mater. Des. 139, 521–530 (2018).
Uribe-Lam, E., Treviño-Quintanilla, C. D., Cuan-Urquizo, E. & Olvera-Silva, O. Use of additive manufacturing for the fabrication of cellular and lattice materials: a review. Mater. Manuf. Process. 36, 257–280 (2021).
Mueller, J., Raney, J. R., Shea, K. & Lewis, J. A. Architected lattices with high stiffness and toughness via multicore-shell 3d printing. Adv.Mater. 30, 1705001 (2018).
Lei, H. et al. Evaluation of compressive properties of slm-fabricated multi-layer lattice structures by experimental test and \(\mu\)-ct-based finite element analysis. Materi. Des. 169, 107685 (2019).
Kumar, A., Collini, L., Daurel, A. & Jeng, J.-Y. Design and additive manufacturing of closed cells from supportless lattice structure. Additive Manuf. 33, 101168 (2020).
Nakarmi, S. et al. The role of unit cell topology in modulating the compaction response of additively manufactured cellular materials using simulations and validation experiments. Model. Simul. Mater. Sci. Eng. 32, 055029 (2024).
Nakarmi, S. et al. Mesoscale simulations and validation experiments of polymer foam compaction-volume density effects. Mater. Lett. 382, 137864 (2025).
Xia, L. & Breitkopf, P. Design of materials using topology optimization and energy-based homogenization approach in matlab. Struct. Multidisciplinary Optim. 52, 1229–1241 (2015).
Radman, A., Huang, X. & Xie, Y. Topology optimization of functionally graded cellular materials. J. Mater. Sci. 48, 1503–1510 (2013).
Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R. & Kraft, O. High-strength cellular ceramic composites with 3d microarchitecture. Procd. National Acad. Sci. 111, 2453–2458 (2014).
Nguyen, J., Park, S.-I. & Rosen, D. Heuristic optimization method for cellular structure design of light weight components. Int. J. Precision Eng. Manuf. 14, 1071–1078 (2013).
Meier, T. et al. Obtaining auxetic and isotropic metamaterials in counterintuitive design spaces: an automated optimization approach and experimental characterization. npj Comput. Mater. 10, 3 (2024).
Vangelatos, Z. et al. Strength through defects: A novel bayesian approach for the optimization of architected materials. Sci. Adv. 7, eabk2218 (2021).
Ramesh, A. et al. Zero-shot text-to-image generation. In International conference on machine learning, 8821–8831 (Pmlr, 2021).
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.061251, 3 (2022).
Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76–86 (2021).
Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science 361, 360–365 (2018).
Zhavoronkov, A. et al. Deep learning enables rapid identification of potent ddr1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).
Liao, W., Lu, X., Fei, Y., Gu, Y. & Huang, Y. Generative ai design for building structures. Autom. Construct. 157, 105187 (2024).
Kingma, D. P., Welling, M. et al. Auto-encoding variational bayes (2013).
Goodfellow, I. J. et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014).
Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).
Sohn, K., Lee, H. & Yan, X. Learning structured output representation using deep conditional generative models. Adv. Neural Inf. Process. Syst. 28 (2015).
Mirza, M. & Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).
Dhariwal, P. & Nichol, A. Diffusion models beat gans on image synthesis. Adv. Neural Inf. Process. Syst. 34, 8780–8794 (2021).
Lee, D., Chen, W., Wang, L., Chan, Y.-C. & Chen, W. Data-driven design for metamaterials and multiscale systems: a review. Adv. Mater. 36, 2305254 (2024).
Zheng, X., Zhang, X., Chen, T.-T. & Watanabe, I. Deep learning in mechanical metamaterials: from prediction and generation to inverse design. Adv. Mater. 35, 2302530 (2023).
Wang, L. et al. Deep generative modeling for mechanistic-based learning and design of metamaterial systems. Comput. Methods App. Mech. Eng. 372, 113377 (2020).
Zheng, L., Karapiperis, K., Kumar, S. & Kochmann, D. M. Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling. Nat. Commun. 14, 7563 (2023).
Tian, J., Tang, K., Chen, X. & Wang, X. Machine learning-based prediction and inverse design of 2d metamaterial structures with tunable deformation-dependent poisson’s ratio. Nanoscale 14, 12677–12691 (2022).
Zheng, X., Chen, T.-T., Guo, X., Samitsu, S. & Watanabe, I. Controllable inverse design of auxetic metamaterials using deep learning. Mater. Des. 211, 110178 (2021).
Challapalli, A., Patel, D. & Li, G. Inverse machine learning framework for optimizing lightweight metamaterials. Materi. Des. 208, 109937 (2021).
Vlassis, N. N. & Sun, W. Denoising diffusion algorithm for inverse design of microstructures with fine-tuned nonlinear material properties. Comput. Methods Appl. Mech. Eng. 413, 116126 (2023).
Bastek, J.-H. & Kochmann, D. M. Inverse design of nonlinear mechanical metamaterials via video denoising diffusion models. Nat. Mach. Intell. 5, 1466–1475 (2023).
Meier, T. et al. Scalable phononic metamaterials: Tunable bandgap design and multi-scale experimental validation. Mater. Des. 252, 113778 (2025).
Kumar, S., Tan, S., Zheng, L. & Kochmann, D. M. Inverse-designed spinodoid metamaterials. npj Comput. Mater. 6, 73 (2020).
Nakarmi, S., Leiding, J. A., Lee, K.-S. & Daphalapurkar, N. P. Predicting non-linear stress-strain response of mesostructured cellular materials using supervised autoencoder. Comput. Methods Appl. Mech. Eng. 432, 117372 (2024).
McNeel, R. et al. Grasshopper-algorithmic modeling for rhino. http://www.grasshopper3d.com (2013).
Dassault Systèmes. Abaqus Analysis User’s Manual, Version 2020 (2020).
Mooney, M. A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940).
Rivlin, R. Large elastic deformations of isotropic materials. i. fundamental concepts. Philosophical Trans. Royal Soc. London. Series A, Math. Phys. Sci. 240, 459–490 (1948).
Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdisciplinary Rev. Comput. Statist. 2, 433–459 (2010).
Yang, C., Kim, Y., Ryu, S. & Gu, G. X. Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater. Des. 189, 108509 (2020).
Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Int. Conference Mach. Learn., 448–456 (pmlr, 2015).
Li, X., Chen, S., Hu, X. & Yang, J. Understanding the disharmony between dropout and batch normalization by variance shift. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2682–2690 (2019).
Kullback, S. & Leibler, R. A. On information and sufficiency. Annals Math. Statist. 22, 79–86 (1951).
Higgins, I. et al. Early visual concept learning with unsupervised deep learning. arXiv preprint arXiv:1606.05579 (2016).
Fu, H. et al. Cyclical annealing schedule: A simple approach to mitigating kl vanishing. arXiv preprint arXiv:1903.10145 (2019).
Smith, S. L., Kindermans, P.-J., Ying, C. & Le, Q. V. Don’t decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489 (2017).
Liu, Y., Neophytou, A., Sengupta, S. & Sommerlade, E. Relighting images in the wild with a self-supervised siamese auto-encoder. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 32–40 (2021).
Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).
Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).
Zhao, F., Huang, Q. & Gao, W. Image matching by normalized cross-correlation. In 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 2, II–II (IEEE, 2006).