Permadi, D. A., Kim, N. T. & Oanh Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact. Atmos. Environ. 78, 250–258 (2013).
Google Scholar
Wiedinmyer, C. et al. The fire inventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci. Model. Dev. 4 (3), 625–641 (2011).
Google Scholar
Kumar, A. et al. Fungal consortium and nitrogen supplementation stimulates soil microbial communities to accelerate in situ degradation of paddy straw. Environ. Sustain. 5 (2), 161–171 (2022).
Google Scholar
Jayakumar, M., Thiyagar, T., Abo, L. D., Arumugasamy, S. K. & Jabesa, A. Paddy Straw as a Biomass Feedstock for the Manufacturing of Bioethanol Using Acid Hydrolysis and Parametric Optimization Through Response Surface Methodology and an Artificial Neural Network (Biomass Conversion and Biorefinery, 2024).
Binod, P. et al. Bioethanol production from rice straw: an overview. Bioresour. Technol. 101 (13), 4767–4774 (2010).
Google Scholar
Mohanty, M. Rice residue-management Options and Effects on Soil Properties and Crop Productivity (Journal of Food Agriculture and Environment, 2004).
Singh, J. Paddy and wheat stubble blazing in Haryana and Punjab States of India: A menace for environmental health. Environ. Qual. Manage. 28 (2), 47–53 (2018).
Google Scholar
Chen, H. Biotechnology of Lignocellulose: Theory and Practice 1-511 (Springer Dordrecht, 2014).
Irfan, M. et al. Estimation Charact. Gaseous Pollutant Emissions Agricultural Crop Residue Combust. Industrial Househ. Sectors Pakistan Atmospheric Environ., 84: 189–197. (2014).
Google Scholar
Wang, X. et al. Effects of different returning method combined with decomposer on decomposition of organic components of straw and soil fertility. Sci. Rep. 11 (1), 15495 (2021).
Google Scholar
Zhang, G. & Dong, Y. Design and application of an efficient cellulose-degrading microbial consortium and carboxymethyl cellulase production optimization. Front. Microbiol. (13), 957444 (2022).
Song, K. et al. The effects of earthworms on fungal diversity and community structure in farmland soil with returned straw. Front. Microbiol. 11, 594265 (2020).
Google Scholar
Huang, S. et al. Effect of environmental C/N ratio on activities of lignin-degrading enzymes produced by phanerochaete Chrysosporium. Pedosphere 30 (2), 285–292 (2020).
Google Scholar
Nero, G., Kivirand, K., Ben Othman, S. & Rinken, T. Amperometric method for the determination of cellulase activity and its optimization using response surface method. J. Anal. Sci. Technol. 13 (1), 21 (2022).
Google Scholar
Nazar, M. et al. Biological delignification of rice straw using laccase from Bacillus ligniniphilus L1 for bioethanol production: A clean approach for agro-biomass utilization. J. Clean. Prod. 360, 132171 (2022).
Google Scholar
Grata, K. Determining cellulolytic activity of microorganisms. Chemistry-Didactics-Ecology-Metrology 25 (1–2), 133–143 (2020).
Google Scholar
Micuți, M. M., Bădulescu, L., Burlacu, A. & Israel-Roming, F. Activity of peroxidase and catalase in soils as influenced by some insecticides and fungicides. AgroLife Sci. J. 7 (2), 99–104 (2018).
Liu, W. et al. Improvement of straw decomposition and rice growth through co-application of straw-decomposing inoculants and ammonium nitrogen fertilizer. BMC Plant Biol. 23 (1), 244 (2023).
Google Scholar
Han, J., Song, X., Fu, H., Liu, C. & Yang, F. Effects of the Decomposition Agent Application on the Physicochemical Properties and Microbial Community Structure of Wheat straw-returning Soil35p. 103668 (Environmental Technology & Innovation, 2024).
Zahid, A., Ali, S., Ahmed, M. & Iqbal, N. Improvement of soil health through residue management and conservation tillage in Rice-Wheat cropping system of Punjab, Pakistan. Agronomy 10 (12), 1844 (2020).
Google Scholar
Sahu, A. et al. Thermophilic ligno-cellulolytic fungi: the future of efficient and rapid bio-waste management. J. Environ. Manage. 244, 144–153 (2019).
Google Scholar
Gahfif, O. et al. Isolation and screening of fungal culture isolated from Algerian soil for the production of cellulase and Xylanase. J. Drug Delivery Ther. 10, 108–113 (2020).
Google Scholar
Choudhary, M. et al. Crop residue degradation by fungi isolated from conservation agriculture fields under rice–wheat system of North-West India. Int. J. Recycling Org. Waste Agric. 5 (4), 349–360 (2016).
Google Scholar
Dabhi, B. K. V.R.a.S.H. Biodegradation of lignin by fungal cultures. J. Pharmacognosy Phytochemistry. 6(4), 840–1842 (2017).
Kausar, H., Sariah, M., Saud, H. M., Alam, M. Z. & Ismail, M. R. Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. Int. Biodeterior. Biodegrad. 64, 594–600 (2010).
Google Scholar
Shinde, R. Isolation of lignocelluloses degrading microbes from soil and their screening based on qualitative analysis and enzymatic assays. Annals Plant. Soil. Res. 24, 347–354 (2022).
Google Scholar
Thormann, M. N., Currah, R. S. & Bayley, S. E. The relative ability of fungi from Sphagnum fuscum to decompose selected carbon substrates. Can. J. Microbiol. 48 (3), 204–211 (2002).
Google Scholar
Awadalla, O., Metwally, M., Bedaiwy, M. & Rashad, R. Cellulolytic Activities of some Filamentous fungi from Soil13p. 1 (THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany), 2017).
Choudhary, M., Sharma, P. & Garg, N. Crop residue degradation by autochthonous Fungi isolated from cropping system management scenarios Sharma Prabodh Chander and Garg Neelam. Bioresources 10, 5809–5819 (2015).
Google Scholar
Ekundayo, T. & Juwon, A. Isolation and identification of cellulytic Fungi from Agrowastes and sawmill soils. Br. Biotechnol. J. 7, 147–159 (2015).
Google Scholar
Sivaramanan, S. & Samaraweera, P. Isolation of cellulolytic fungi and their degradation on cellulosic agricultural wastes. J. Academia Indus. Res. (JAIR) 2, 458–463 (2014).
Mardetko, N. et al. Screening of lignocellulolytic enzyme activities in fungal species and sequential Solid-State and submerged cultivation for the production of enzyme cocktails. Polymers. 13(21), 3736 (2021).
Nayak, B. & Choudhary., R. Lignocellulolytic fungal isolation and screening for their laccase producing ability. Indian J. Sci. Res. 13 (2), 188-191(2017).
Zhang, B. Y., Dou, S., Guan, S., Yang, C. & Wang, Z. Deep straw burial accelerates straw decomposition and improves soil water repellency. Agronomy 13 https://doi.org/10.3390/agronomy13071927 (2023).
Pitt, J.I. and A.D. Hocking, Fungi and food spoilage: J.I. Pitt … and A.D. Hocking. Second edition ed. A Chapman and hall food science book (Gaithersburg: Aspen publication Gaithersburg, 1999).
Tankeshwar, A. Serial dilution method for estimating viable count of bacteria. Available from: https://microbeonline.com/serial-dilution-method/ [cited 2023 23 May]; (2022)
Wet, M. M. M. & Brink, H. G. Fungi in the bioremediation of toxic effluents. 18, 407-431 (Academic Press, 2021).
Avin, F. Easy way to count spores and prepare spore suspension by Hemocytometer. (2019).
Dash, P. K. et al. Efficient lignin decomposing microbial consortium to hasten Rice-Straw composting with moderate GHGs fluxes. Waste Biomass Valoriz. 13 (1), 481–496 (2022).
Google Scholar
Miller, G. L. Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31 (3), 426–428 (1959).
Google Scholar
Baker, B. A. J. Measurement of Cellulase Activities: Laboratory Analytical Procedure (LAP) (National Renewable Energy Laboratory (NREL), 2008).
Baltierra-Trejo, E., Márquez-Benavides, L. & Sánchez-Yáñez, J. M. Inconsistencies and ambiguities in calculating enzyme activity: the case of laccase. J. Microbiol. Methods. 119, 126–131 (2015).
Google Scholar
Bach, C. E. et al. Measuring phenol oxidase and peroxidase activities with pyrogallol, l-DOPA, and ABTS: effect of assay conditions and soil type. Soil Biol. Biochem. 67, 183–191 (2013).
Google Scholar
German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43 (7), 1387–1397 (2011).
Google Scholar
Dinh Vu, N., Thi Tran, H., Bui, N. D., Duc Vu, C. & Viet Nguyen, H. Lignin and cellulose extraction from Vietnam’s rice straw using ultrasound-assisted alkaline treatment method. Int. J. Polym. Sci. 2017, 1063695 (2017).
Franz Schinner, R. Ö., Kandeler, E. & Margesin, R. Methods in Soil Biology. 1 ed. IX, 426 (Springer Berlin, Heidelberg, 2021)
Zhu, L., O’Dwyer, J. P., Chang, V. S., Granda, C. B. & Holtzapple, M. T. Structural features affecting biomass enzymatic digestibility. Bioresour Technol. 99 (9), 3817–3828 (2008).
Google Scholar
Sangwan, V. & Deswal, S. In-situ management of paddy stubble through microbial biodegradation. E3S Web of Conferences 241 p. 03001 (2021).
Zhang, E., Wang, M., Pan, X. & Wang, X. Establishment of a Highly Efficient Corn Stock-Degrading Microbial Consortium and its Degradation Effect2022p. 8034553 (Advances in Agriculture, 2022). 1.
Zhang, Z., Shah, A. M., Mohamed, H., Tsiklauri, N. & Song, Y. Isolation and Screening of Microorganisms for the Effective Pretreatment of Lignocellulosic Agricultural Wastes. BioMed Research International, 5514745 (2021).
Yu Hai-Bin, H. L. R., Jun-Shou, F. & Xin, Z. Screening of highly efficient cellulose degradation microbes and construction of composite strains. J. Agricultral Biotechnol. 农业生物技术学报 23 (4), 421–431 (2015).
Bhattacharjya, S. et al. In Situ Decomposition of Crop Residues Using Lignocellulolytic Microbial Consortia: a Viable Alternative To Residue Burning28 (Environmental Science and Pollution Research, 2021).
Safari Sinegani, A. A., Emtiazi, G., Hajrasuliha, S. & Shariatmadari, H. Biodegradation of some agricultural residues by fungi in agitated submerged cultures. Afr. J. Biotechnol. 4, 1058–1061 (2005).
Kumar, A. et al. Fungal consortium and nitrogen supplementation stimulates soil microbial communities to accelerate in situ degradation of paddy straw. Environ. Sustain., (5), 161–1771 (2022).
Sharma, S., Kumawat, K. C. & Kaur, S. Potential of Indigenous ligno-cellulolytic microbial consortium to accelerate degradation of heterogenous crop residues. Environ. Sci. Pollut Res. Int. 29 (58), 88331–88346 (2022).
Google Scholar
Huang, X., Li, M., Li, J. & Song, Y. A high-resolution emission inventory of crop burning in fields in China based on MODIS thermal anomalies/fire products. Atmos. Environ. 50, 9–15 (2012).
Google Scholar
Mothe, S. et al. Comparison of GHG emissions from open field burning and anaerobic digestion of rice straw. Environ. Technol. 28, 1–11 (2022).
Kumar Sakhiya, A. et al. Sustainable utilization of rice straw to mitigate climate change: A bioenergy approach. Materials Today: Proceedings 46, 5366-5371 (2020).
Pham, C. T. et al. Emission Factors Sel. Air Pollutants Rice Straw Burning Hanoi Vietnam Air Qual. Atmos. Health, 14(11): 1757–1771. (2021).
Google Scholar