Wear behaviour and statistical assessment of organomodified nanoclay reinforced glass fiber epoxy nanocomposites

  • Dash, S., Satpathy, M. P., Routara, B. C., Pati, P. R. & Gantayat, S. Enhancing mechanical and tribological performance of hybrid composites: an experimental study utilizing response surface methodology and firefly algorithm. Polym. Compos. 45, 15924–15940. https://doi.org/10.1002/pc.28880 (2024).

    Google Scholar 

  • Sahu, S. K. & Sreekanth, P. S. R. Evaluation of tensile properties of spherical shaped SiC inclusions inside recycled HDPE matrix using FEM based representative volume element approach. Heliyon 9, e14034. https://doi.org/10.1016/j.heliyon.2023.e14034 (2023).

    Google Scholar 

  • Sahu, S. K. & Sreekanth, P. S. R. Artificial neural network for prediction of mechanical properties of HDPE based nanodiamond nanocomposite. Polym. Korea. 46, 614–620. https://doi.org/10.7317/pk.2022.46.5.614 (2022).

    Google Scholar 

  • Gowrishankar, M. C., Shettar, M., Somdee, P., Rangaswamy, N. & Chate, G. R. A review on mechanical, water-soaking, thermal, and wear properties of nanoclay-polyester nanocomposites. Discov. Mater. 5. https://doi.org/10.1007/s43939-025-00304-9 (2025).

  • Awasthi, T., Bharti, M. S., Agrawal, A. & Gupta, G. Experimental study of physical, mechanical and tribological behaviour of polyester/kota stone dust composite. Eng. Res. Express. 6, 045571. https://doi.org/10.1088/2631-8695/ad9b6e (2024).

    Google Scholar 

  • El-meniawi, M. A. H., Mahmoud, K. R. & Megahed, M. Positron annihilation spectroscopy and mechanical properties studies for epoxy matrices reinforced with different nanoparticles. J. Polym. Res. 23, 181. https://doi.org/10.1007/s10965-016-1074-6 (2016).

    Google Scholar 

  • Dholi, A., Yadav, S., Agrawal, A. & Gupta, G. Development of epoxy/red stone dust composites and their characterization for light duty structural and automotive applications. J. Adhes. Sci. Technol. 39, 1737–1756. https://doi.org/10.1080/01694243.2025.2464879 (2025).

    Google Scholar 

  • Mohan, T. P. & Kanny, K. Tribological studies of nanoclay filled epoxy hybrid laminates. Tribol. Trans. 60, 681–692. https://doi.org/10.1080/10402004.2016.1204039 (2017).

    Google Scholar 

  • Xu, Z., Kong, W., Zhou, M. & Peng, M. Effect of surface modification of montmorillonite on the properties of rigid polyurethane foam composites. Chin. J. Polym. Sci. 28, 615–624. https://doi.org/10.1007/s10118-010-9111-0 (2010).

    Google Scholar 

  • Sharma, B., Mahajan, S., Chhibber, R. & Mehta, R. Glass fiber reinforced Polymer-Clay nanocomposites: Processing, structure and hygrothermal effects on mechanical properties. Procedia Chem. 4, 39–46. https://doi.org/10.1016/j.proche.2012.06.006 (2012).

    Google Scholar 

  • Megahed, A. A. E. W. & Megahed, M. Fabrication and characterization of functionally graded nanoclay/glass fiber/epoxy hybrid nanocomposite laminates. Iran. Polym. J. 26, 673–680. https://doi.org/10.1007/s13726-017-0552-y (2017).

    Google Scholar 

  • Mahesh, K. V. et al. The influence of montmorillonite on mechanical, thermal and fire retardation properties of vinylester/glass composites. J. Compos. Mater. 47, 2163–2178. https://doi.org/10.1177/0021998312454902 (2013).

    Google Scholar 

  • Nazir, M. S. et al. Characteristic Properties of Nanoclays and Characterization of Nanoparticulates and Nanocomposites 35–55. https://doi.org/10.1007/978-981-10-1953-1_2 (2016).

  • Wang, M., Fan, X., Thitsartarn, W. & He, C. Rheological and mechanical properties of epoxy/clay nanocomposites with enhanced tensile and fracture toughnesses. Polym. (Guildf). 58, 43–52. https://doi.org/10.1016/j.polymer.2014.12.042 (2015).

    Google Scholar 

  • Pati, P. R. Prediction and wear performance of red brick dust filled glass–epoxy composites using neural networks. Int. J. Plast. Technol. 23, 253–260. https://doi.org/10.1007/s12588-019-09257-0 (2019).

    Google Scholar 

  • Mohamed, Y. S., El-Gamal, H. & Zaghloul, M. M. Y. Micro-hardness behavior of fiber reinforced thermosetting composites embedded with cellulose nanocrystals. Alexandria Eng. J. 57, 4113–4119. https://doi.org/10.1016/j.aej.2018.10.012 (2018).

    Google Scholar 

  • Mrah, L. & Meghabar, R. Dispersion and improvement of organoclays in nanocomposites based on poly(propylene oxide). J. Thermoplast. Compos. Mater. 35, 1889–1902. https://doi.org/10.1177/0892705720939172 (2022).

    Google Scholar 

  • Rafiq, A. & Merah, N. Nanoclay enhancement of flexural properties and water uptake resistance of glass fiber-reinforced epoxy composites at different temperatures. J. Compos. Mater. 53, 143–154. https://doi.org/10.1177/0021998318781220 (2019).

    Google Scholar 

  • Yi, H., Hu, M., Yao, D., Lin, H. & Zheng, B. Tribological and thermomechanical properties of epoxy-matrix nanocomposites containing montmorillonite nanoclay intercalated with polybutadiene-based quaternary ammonium salt. Plast., Rubber Compos. 49, 389–399. https://doi.org/10.1080/14658011.2020.1776921 (2020).

    Google Scholar 

  • Reddy Paluvai, N., Mohanty, S. & Nayak, S. K. Effect of cloisite 30B clay and Sisal fiber on dynamic mechanical and fracture behavior of unsaturated polyester toughened epoxy network. Polym. Compos. 37, 2832–2846. https://doi.org/10.1002/pc.23480 (2016).

    Google Scholar 

  • Mohammed, A. S., Ali, A. & bin, Nesar, M. Evaluation of tribological properties of organoclay reinforced UHMWPE nanocomposites. J. Tribol. 139. https://doi.org/10.1115/1.4033188 (2017).

  • Dorigato, A., Morandi, S. & Pegoretti, A. Effect of nanoclay addition on the fiber/matrix adhesion in epoxy/glass composites. J. Compos. Mater. 46, 1439–1451. https://doi.org/10.1177/0021998311420311 (2012).

    Google Scholar 

  • Dos Santos, E. P., Fook, M. V. L., Malta, O. M. L., De Lima Silva, S. M. & Leite, I. F. Role of surfactants in the properties of Poly(Ethylene Terephthalate)/Purified clay nanocomposites. Materials 11, 1397. https://doi.org/10.3390/ma11081397 (2018).

    Google Scholar 

  • Ozsoy, I., Mimaroglu, A. & Unal, H. Influence of micro- and nanofiller contents on friction and wear behavior of epoxy composites. Sci. Eng. Compos. Mater. 24, 485–494. https://doi.org/10.1515/secm-2014-0262 (2017).

    Google Scholar 

  • Moosa, M. H. et al. Structural and tribological characterization of carbon and glass fabrics reinforced epoxy for bushing applications safety. Polym. (Basel) 15. https://doi.org/10.3390/polym15092064 (2023).

  • Murugan, A. et al. Optimization of tribo-mechanical properties of kenaf/jute-SiC hybrid composites using integrated grey-fuzzy approach. Sci. Rep. 15. https://doi.org/10.1038/s41598-025-11340-z (2025).

  • Ibrahim, M. A., Çamur, H., Savaş, M. A. & Abba, S. I. Optimization and prediction of tribological behaviour of filled polytetrafluoroethylene composites using Taguchi Deng and hybrid support vector regression models. Sci. Rep. 12. https://doi.org/10.1038/s41598-022-14629-5 (2022).

  • Shettar, M., Bhat, A. & Katagi, N. N. Estimation of mass loss under wear test of nanoclay-epoxy nanocomposite using response surface methodology and artificial neural networks. Sci. Rep. 15. https://doi.org/10.1038/s41598-025-05263-y (2025).

  • Shettar, M., Kowshik, C. S. S., Manjunath, M. & Hiremath, P. Experimental investigation on mechanical and wear properties of nanoclay-epoxy composites. J. Mater. Res. Technol. 9, 9108–9116. https://doi.org/10.1016/j.jmrt.2020.06.058 (2020).

    Google Scholar 

  • Jagadeesan, N. et al. Response surface methodology based optimization of test parameter in glass fiber reinforced polyamide 66 for dry sliding. Tribol. Perform. Mater. 15. https://doi.org/10.3390/ma15196520 (2022).

  • Hiremath, P. et al. Comprehensive experimental optimization and Image-Driven machine learning prediction of tribological performance in MWCNT-reinforced bio-based epoxy nanocomposites. J. Compos. Sci. 9, 385. https://doi.org/10.3390/jcs9080385 (2025).

    Google Scholar 

  • Hiremath, P., Kini, U. A., Shettar, M., Sharma, S. & P K J Investigation on tensile properties and analysis of wear property of glass fiber-epoxy-nanoclay ternary nanocomposite using response surface methodology. Cogent Eng. 8. https://doi.org/10.1080/23311916.2021.1877869 (2021).

  • Hiremath, P., Shivamurthy, R. C., Kamath, G. B. & Naik, N. Comprehensive analysis of wear, friction, and thermal resistance in PVDF/Nanoclay composites using Taguchi methodology for enhanced tribological performance. J. Compos. Sci. 9. https://doi.org/10.3390/jcs9010037 (2025).

  • Prajapati, P. K., Kumar, S. & Singh, K. K. Taguchi approach for comparative optimization of tribological behavior of glass fabric reinforced epoxy composite with and without graphene-nano platelets filler. Mater. Today Proc. 72, 1605–1612. https://doi.org/10.1016/j.matpr.2022.09.412 (2023).

  • Manoharan, S., Vijay, R., Singaravelu, D. L., Krishnaraj, S. & Suresha, B. Tribological characterization of recycled basalt-aramid fiber reinforced hybrid friction composites using grey-based Taguchi approach. Mater. Res. Express 6. https://doi.org/10.1088/2053-1591/ab07ce (2019).

  • Boobalan, V. & Sathish, T. Optimization of tribological properties of natural basalt/synthetic E-glass fiber/polymer nanocomposites modified with MWCNTs + SiO2 using box Behnken design (RSM). Interactions 245. https://doi.org/10.1007/s10751-024-02014-9 (2024).

  • Agrawal, S., Singh, N., Singh, Y. & Upadhyay, R. Tribological study and parameters optimisation of CNT added glass fibre reinforced polymer composite sliding under inert environment. Adv. Mater. Process. Technol. 9, 1283–1298. https://doi.org/10.1080/2374068X.2022.2113900 (2022).

    Google Scholar 

  • Şahin, Y. & Şahin, F. Effects of process factors on tribological behaviour of epoxy composites including Al2O3 nano particles: a comparative study on multi-regression analysis and artificial neural network. Adv. Mater. Process. Technol. 8, 2007–2021. https://doi.org/10.1080/2374068X.2021.1878712 (2022).

    Google Scholar 

  • Tripathi, V. K. & Ambekar, S. Optimization and analysis of wear rate of CFRP-NanoZno/Nanoclay hybrid composites using RSM. J. Bio Tribocorros. 5. https://doi.org/10.1007/s40735-019-0284-y (2019).

  • Chen, Z. et al. Enhanced mechanical and tribological properties of epoxy composites reinforced by novel hyperbranched polysiloxane functionalized graphene/MXene hybrid. Chem. Eng. J. 466. https://doi.org/10.1016/j.cej.2023.143086 (2023).

  • Ilyin, S. O. & Kotomin, S. V. Effect of nanoparticles and their anisometry on adhesion and strength in hybrid carbon-fiber-reinforced epoxy nanocomposites. J. Compos. Sci. 7. https://doi.org/10.3390/jcs7040147 (2023).

  • Purohit, A. et al. Mechanical and tribo-performance analysis of LD sludge filled wood Apple dust-epoxy composites using response surface methodology. Interactions 245, 131. https://doi.org/10.1007/s10751-024-01978-y (2024).

    Google Scholar 

  • Kumar, S. S., Shyamala, P., Pati, P. R. & Gandla, P. K. Wear and frictional performance of epoxy composites reinforced with natural waste fibers and fillers for engineering applications. Fibers Polym. 25, 1429–1442. https://doi.org/10.1007/s12221-024-00519-2 (2024).

    Google Scholar 

  • Puttaswamygowda, P. H., Sharma, S., Ullal, A. K. & Shettar, M. Synergistic enhancement of the mechanical properties of epoxy-based coir fiber composites through alkaline treatment and nanoclay reinforcement. J. Compos. Sci. 8. https://doi.org/10.3390/jcs8020066 (2024).

  • Zhou, S. et al. Facile Preparation of multiscale graphene-basalt fiber reinforcements and their enhanced mechanical and tribological properties for polyamide 6 composites. Mater. Chem. Phys. 217, 315–322. https://doi.org/10.1016/j.matchemphys.2018.06.080 (2018).

    Google Scholar 

  • Liu, C. et al. Highly exfoliated epoxy/clay nanocomposites filled with novel cationic fluorinated polyacrylate modified montmorillonite: morphology and mechanical properties. Polym. Compos. 40, 4266–4280. https://doi.org/10.1002/pc.25288 (2019).

    Google Scholar 

  • Sanaka, R. et al. A review of the current state of research and future prospectives on Stimulus-Responsive shape memory polymer composite and its blends. J. Compos. Sci. 8, 324. https://doi.org/10.3390/jcs8080324 (2024).

    Google Scholar 

  • Shivamurthy B. & Siddaramaiah, P. M. S. Influence of SiO2 Fillers on sliding wear resistance and mechanical properties of compression moulded glass epoxy composites. J. Miner. Mater. Charact. Eng. 08, 513–530 (2009).

  • Basavarajappa, S., Ellangovan, S. & Arun, K. V. Studies on dry sliding wear behaviour of graphite filled glass–epoxy composites. Mater. Des. 30, 2670–2675. https://doi.org/10.1016/j.matdes.2008.10.013 (2009).

    Google Scholar 

  • Kumar, N. et al. Tribological performance and microstructural insights of epoxy-based GFRP nanocomposites reinforced with ceramic nanoclays for wear-resistant applications. J. Manuf. Process. 151, 460–475. https://doi.org/10.1016/j.jmapro.2025.07.045 (2025).

    Google Scholar 

  • Kumar, S., Singh, K. K. & Kumar, S. Tribological Behaviour of Glass/Epoxy Laminated Composite Reinforced with Graphene and MWCNT (2019).

  • Vinayagamoorthy, R. Friction and wear characteristics of fibre-reinforced plastic composites. J. Thermoplast. Compos. Mater. 33, 828–850. https://doi.org/10.1177/0892705718815529 (2020).

    Google Scholar 

  • Dhar Badgayan, N., Kumar Sahu, S., Samanta, S. & Rama Sreekanth, P. S. Assessment of bulk mechanical properties of HDPE hybrid composite filled with 1D/2D nanofiller system. Mater. Sci. Forum. 917, 12–16 (2018).

    Google Scholar 

  • Sanaka, R. & Sahu, S. K. Experimental investigation into mechanical, thermal, and shape memory behavior of thermoresponsive PU/MXene shape memory polymer nanocomposite. Heliyon 10, e24014. https://doi.org/10.1016/j.heliyon.2024.e24014 (2024).

    Google Scholar 

  • Talib, A. A. A., Jumahat, A., Jawaid, M., Sapiai, N. & Leao, A. L. Effect of wear conditions, parameters and sliding motions on tribological characteristics of basalt and glass fibre reinforced epoxy composites. Materials 14, 1–18. https://doi.org/10.3390/ma14030701 (2021).

    Google Scholar 

  • Kausar, A., Ahmad, I., Maaza, M. & Eisa, M. H. State-of-the-Art nanoclay reinforcement in green polymeric nanocomposite: from design to new opportunities. Minerals 12. https://doi.org/10.3390/min12121495 (2022).

  • Jawahar, P., Gnanamoorthy, R. & Balasubramanian, M. Tribological behaviour of clay – thermoset polyester nanocomposites. Wear 261, 835–840. https://doi.org/10.1016/j.wear.2006.01.010 (2006).

    Google Scholar 

  • Gbadeyan, O. J., Mohan, T. P. & Kanny, K. Effect of loading nano-clay on banana fibers infused epoxy composite wear rate thermal property and water absorption properties. Mater. Today Proc. 87, 252–256. https://doi.org/10.1016/j.matpr.2023.05.352 (2023).

  • Rashmi, Renukappa, N. M., Suresha, B., Devarajaiah, R. M. & Shivakumar, K. N. Dry sliding wear behaviour of organo-modified montmorillonite filled epoxy nanocomposites using taguchi’s techniques. Mater. Des. 32, 4528–4536. https://doi.org/10.1016/j.matdes.2011.03.028 (2011).

    Google Scholar 

  • Preethi, V., Kavimani, V. & Gopal, P. M. Multi-objective optimization of wear and friction behavior of hybrid magnesium-graphene-silicon nitride composite under dry sliding conditions. Proc. Inst. Mech. Eng.. https://doi.org/10.1177/13506501241313079 (2025).

  • Senthil Kumar, M. S., Mohana Sundara Raju, N., Sampath, P. S. & Vivek, U. Tribological analysis of nano clay/epoxy/glass fiber by using taguchi’s technique. Mater. Des. 70, 1–9. https://doi.org/10.1016/j.matdes.2014.12.033 (2015).

    Google Scholar 

  • Jeyakumar, R., Sampath, P. S., Ramamoorthi, R. & Ramakrishnan, T. Structural, morphological and mechanical behaviour of glass fibre reinforced epoxy nanoclay composites. Int. J. Adv. Manuf. Technol. 93, 527–535. https://doi.org/10.1007/s00170-017-0565-x (2017).

    Google Scholar 

  • Srinivasa Perumal, K. P., Selvarajan, L., Mathan Kumar, P. & Shriguppikar, S. Enhancing mechanical and morphological properties of glass fiber reinforced epoxy polymer composites through rutile nanoparticle incorporation. Progress Additive Manuf. 10, 831–848. https://doi.org/10.1007/s40964-024-00675-0 (2025).

    Google Scholar 

  • Tian, J., Qi, X., Li, C. & Xian, G. Friction behaviors and wear mechanisms of multi-filler reinforced epoxy composites under dry and wet conditions: effects of loads, sliding speeds, temperatures, water lubrication. Tribol. Int. 179. https://doi.org/10.1016/j.triboint.2022.108148 (2023).

  • Continue Reading