Detection and diagnosis of diabetic retinopathy in retinal fundus images using agentic AI approaches

  • Rajarajeshwari, G. & Selvi, G. C. Application of artificial intelligence for classification, segmentation, early detection, early diagnosis, and grading of diabetic retinopathy from fundus retinal images: a comprehensive review. IEEE Access vol no 12, pp-172499-172536 (2024).

  • Yao, J. et al. Novel artificial intelligence algorithms for diabetic retinopathy and diabetic macular edema. Eye Vis. 11 (1), 23 (2024).

    Google Scholar 

  • Alsadoun, L. et al. Artificial intelligence (AI)-Enhanced detection of diabetic retinopathy from fundus images: the current landscape and future directions. Cureus, 16(8),1-8 (2024).

  • Ahmed, H. B. & Alzuoubi, M. Designing accessible virtual reality interfaces using reinforcement learning for users with motor and sensory impairments. PatternIQ Min. 2 (1), 1–12. https://doi.org/10.70023/sahd/250201 (2025).

    Google Scholar 

  • Ikram, A. & Imran, A. ResViT FusionNet model: an explainable AI-driven approach for automated grading of diabetic retinopathy in retinal images. Comput. Biol. Med. 186, 109656 (2025).

    Google Scholar 

  • Peters, I. & Kamrul, G. Applications AI-driven solar energy management system for smart grids using predictive analytics and adaptive control. J. Quantum Nano-Green Environ. Syst. 1 (1), 14–24. https://doi.org/10.70023/qnges.251102 (2025).

    Google Scholar 

  • Grzybowski, A. et al. Artificial intelligence for diabetic retinopathy screening: a review. Eye 34 (3), 451–460 (2020).

    Google Scholar 

  • Chen, Q., Keenan, T. D., Agron, E., Allot, A., Guan, E., Duong, B., … Lu, Z. (2024).Towards Accountable AI-Assisted Eye Disease Diagnosis: Workflow Design, External Validation,and Continual Learning. arXiv preprint arXiv:2409.15087.

  • Vujosevic, S. et al. Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol. 8 (4), 337–347 (2020).

    Google Scholar 

  • Hogg, J. A mixed methods evaluation of artificial intelligence-enabled macula services (Doctoral dissertation, Newcastle University, 2024).

  • Alyoubi, W. L., Shalash, W. M. & Abulkhair, M. F. Diabetic retinopathy detection through deep learning techniques: A review. Inf. Med. Unlocked. 20, 100377 (2020).

    Google Scholar 

  • Das, D., Biswas, S. K. & Bandyopadhyay, S. A critical review on diagnosis of diabetic retinopathy using machine learning and deep learning. Multimedia Tools Appl. 81 (18), 25613–25655 (2022).

    Google Scholar 

  • Oganov, A. C., Seddon, I., Jabbehdari, S., Uner, O. E., Fonoudi, H., Yazdanpanah,G., … Arevalo, J. F. (2023). Artificial intelligence in retinal image analysis: Development,advances, and challenges. Survey of ophthalmology, 68(5), 905–919.

  • Kaur, J., Mittal, D. & Singla, R. Diabetic retinopathy diagnosis through computer-aided fundus image analysis: a review. Arch. Comput. Methods Eng. 29 (3), 1673–1711 (2022).

    Google Scholar 

  • Stranjak, A. & Campagna, S. Decentralised agent-based medical image reconstruction. Procedia Comput. Sci. 207, 2106–2115 (2022).

    Google Scholar 

  • Sivakumar, N., Mura, C. & Peirce, S. M. Innovations in integrating machine learning and agent-based modeling of biomedical systems. Front. Syst. Biology. 2, 959665 (2022).

    Google Scholar 

  • Khan, A. et al. A survey of the vision Transformers and their CNN-transformer based variants. Artif. Intell. Rev. 56 (Suppl 3), 2917–2970 (2023).

    Google Scholar 

  • Long, H. Hybrid design of CNN and vision transformer: A review. In Proceedings of the 2024 7th International Conference on Computer Information Science and Artificial Intelligence (121–127). (2024).

  • Annamalai, M. et al. Revolutionizing Medical Diagnostics with Transparent AI-Driven Decision Support Systems. In 2024 4th International Conference on Mobile Networks and Wireless Communications (ICMNWC) (1–7). IEEE. (2024).

  • Soumya, M. A. A. K. AI-Driven Insights: Revolutionizing Health Diagnostics and Treatment (Budha publication, 2024).

  • Yamani, I. U. & Basari, B. Leveraging convolutional neural networks for automated detection and grading of diabetic retinopathy from fundus images. Jurnal Teknik Elektro. 15 (2), 68–73 (2023).

    Google Scholar 

  • Niu, Y., Gu, L., Zhao, Y. & Lu, F. Explainable diabetic retinopathy detection and retinal image generation. IEEE J. Biomedical Health Inf. 26 (1), 44–55 (2021).

    Google Scholar 

  • Khan, T. M., Soomro, T. A. & Razzak, I. The Role of AI in Early Detection of Life-Threatening Diseases: A Retinal Imaging Perspective. arXiv preprint arXiv:2505.20810. (2025).

  • Mohammad, N. K., Rajab, I. A., Al-Taie, R. H., Ismail, M. & Mohammad, N. Machine learning and vision: advancing the frontiers of diabetic cataract management. Cureus, 16(8),1-11 (2024).

  • Jacoba, C. M. P., Doan, D., Salongcay, R. P., Aquino, L. A. C., Silva, J. P. Y., Salva,C. M. G., … Silva, P. S. (2023). Performance of automated machine learning for diabetic retinopathy image classification from multi-field handheld retinal images. Ophthalmology Retina, 7(8), 703–712.

  • Rêgo, S., Monteiro-Soares, M., Dutra-Medeiros, M., Dias, C., Nunes, F. & C., & Exploring the feasibility of opportunistic diabetic retinopathy screening with handheld fundus cameras in primary care: insights from Doctors and nurses. Diabetology 5 (6), 566–583 (2024).

    Google Scholar 

  • Chawla, R., Karkhanis, P., Shah, M., Das, A., Sharma, R., Almaula, D., … Tandon, R.(2025). Artificial intelligence for advancing eye care in resource-poor settings:Assessing the predictive accuracy of an AI-model for diabetic retinopathy screening in India. Global Epidemiology, 100209, (2025).

  • Son, J., Shin, J. Y., Kong, S. T., Park, J., Kwon, G., Kim, H. D., … Park, S. J. (2023).An interpretable and interactive deep learning algorithm for a clinically applicable retinal fundus diagnosis system by modelling finding-disease relationship. Scientific Reports, 13(1), 5934, (2023).

  • https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data

  • Continue Reading