A smart nail platform for wireless subsoil health monitoring via unmanned aerial vehicle-assisted radio frequency interrogation

  • Bindraban, P. S. & Rabbinge, R. Megatrends in agriculture-views for discontinuities in past and future developments. Glob. Food Secur. 1, 99–105 (2012).

    Google Scholar 

  • Abdo, A. I. et al. Conventional agriculture increases global warming while decreasing system sustainability. Nat. Clim. Chang 15, 110–117 (2024).

    Google Scholar 

  • Elferink, M. & Schierhorn, F. Global demand for food is rising. Can we meet it? Harv. Bus. Rev. 7, 04 (2016).

    Google Scholar 

  • Corwin, D. L. & Lesch, S. M. Apparent soil electrical conductivity measurements in agriculture. Comput Electron Agric. 46, 11–43 (2005).

    Google Scholar 

  • Valin, H. et al. The future of food demand: understanding differences in global economic models. Agric. Econ. 45, 51–67 (2014).

    Google Scholar 

  • Cassman, K. G. What do we need to know about global food security?. Glob. Food Secur. 1, 81–82 (2012).

    Google Scholar 

  • McLaughlin, D. & Kinzelbach, W. Food security and sustainable resource management. Water Resour. Res. 51, 4966–4985 (2015).

    Google Scholar 

  • Qadir, M., Boers, T. M., Schubert, S., Ghafoor, A. & Murtaza, G. Agricultural water management in water-starved countries: challenges and opportunities. Agric. Water Manag. 62, 165–185 (2003).

    Google Scholar 

  • Vergopolan, N. et al. High-resolution soil moisture data reveal complex multi-scale spatial variability across the United States. Geophys. Res. Lett. 49, e2022GL098586 (2022).

  • Li, J., Richter, D., de, B., Mendoza, A. & Heine, P. Effects of land-use history on soil spatial heterogeneity of macro- and trace elements in the Southern Piedmont, USA. Geoderma 156, 60–73 (2010).

    Google Scholar 

  • Zhang, N., Wang, M. & Wang, N. Precision agriculture—a worldwide overview. Comput. Electron. Agric. 36, 113–132 (2002).

    Google Scholar 

  • Stafford, J. V. Implementing precision agriculture in the 21st century. J. Agric. Eng. Res. 76, 267–275 (2000).

    Google Scholar 

  • Yang, C., Everitt, J. H., Du, Q., Luo, B. & Chanussot, J. Using high-resolution airborne and satellite imagery to assess crop growth and yield variability for precision agriculture. Proc. IEEE 101, 582–592 (2013).

    Google Scholar 

  • Di Gennaro, S. F. et al. Spectral comparison of UAV-based hyper and multispectral cameras for precision viticulture. Remote Sens. 14, 449 (2022).

  • Yu, H., Kong, B., Wang, G., Du, R. & Qie, G. Prediction of soil properties using a hyperspectral remote sensing method. Arch. Agron. Soil Sci. 64, 546–559 (2018).

    Google Scholar 

  • Syrový, T. et al. Fully printed disposable IoT soil moisture sensors for precision agriculture. Chemosensors 8, 1–14 (2020).

    Google Scholar 

  • Babaeian, E. et al. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 57, 530–616 (2019).

    Google Scholar 

  • Albornoz, C. & Giraldo, L. F. Trajectory design for efficient crop irrigation with a UAV. In proc. IEEE 3rd Colombian Conference on Automatic Control (CCAC) 1–6 (IEEE, 2017).

  • Marios, S. & Georgiou, J. Precision agriculture: challenges in sensors and electronics for real-time soil and plant monitoring. In proc. IEEE Biomedical Circuits and Systems Conference (BioCAS) 1–4 (IEEE, 2017).

  • Walker, J. P., Willgoose, G. R. & Kalma, J. D. In situ measurement of soil moisture: a comparison of techniques. J. Hydrol. 293, 85–99 (2004).

    Google Scholar 

  • Wu, X. & Liu, M. In-situ soil moisture sensing: measurement scheduling and estimation using compressive sensing. In Proc. ACM/IEEE International Conference on Information Processing in Sensor Networks 1–12 (IEEE, 2012).

  • Franko, U. & Mirschel, W. Integration of a crop growth model with a model of soil dynamics. Agron. J. 93, 666–670 (2001).

    Google Scholar 

  • Marschner, P. & Rengel, Z. Nutrient availability in soils. in Mineral Nutrition of Higher Plants 315–330 Ch. 12 (Academic Press, 2012).

  • Lund, E. D., Colin, P. E., Christy, D. & Drummond, P. E. Applying soil electrical conductivity technology to precision agriculture. In Proc. Fourth International Conference on Precision Agriculture (eds Robert, P. C., Rust, R. H. & Larson, W. E.) (ASA, CSSA, and SSSA Books, 1999).

  • Visconti, F., de Paz, J. M., Martínez, D. & Molina, M. J. Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils. Agric. Water Manag. 132, 111–119 (2014).

    Google Scholar 

  • Segovia-Cardozo, D. A., Franco, L. & Provenzano, G. Detecting crop water requirement indicators in irrigated agroecosystems from soil water content profiles: an application for a citrus orchard. Sci. Total Environ. 806, 150492 (2022).

    Google Scholar 

  • Xu, Z. et al. Flat thin mm-sized soil moisture sensor (MSMS) fabricated by gold compact discs etching for real-time in situ profiling. Sens. Actuators B Chem. 255, 1166–1172 (2018).

    Google Scholar 

  • Gopalakrishnan, S. et al. Battery-less wireless chipless sensor tag for subsoil moisture monitoring. IEEE Sens. J. 21, 6071–6082 (2021).

    Google Scholar 

  • Gopalakrishnan, S. et al. A biodegradable chipless sensor for wireless subsoil health monitoring. Sci. Rep. 12, 1–12 (2022).

    Google Scholar 

  • Hasan, A., Bhattacharyya, R. & Sarma, S. E. Towards pervasive soil moisture sensing using RFID tag antenna-based sensors. In Proc. IEEE Int. Conf. RFID-Technology and Applications (RFID-TA), (IEEE, 2015).

  • Hasan, A. Bhattacharyya, R. & Sarma, S. E. A monopole-coupled RFID sensor for pervasive soil moisture monitoring. In Proc. IEEE Antennas and Propagation Society International Symposium (APSURSI) (IEEE, 2013).

  • Alsultan, M. A., Melià-Seguí, J., Parrón-Granados, J. & López-Soriano, S. A battery-less UHF RFID sensor for soil moisture monitoring. IEEE J. Radio Frequency Identif. 9, 286–294 (2025).

    Google Scholar 

  • Zuffanelli, S. et al. Analysis of the Split Ring Resonator (SRR) antenna applied to passive UHF-RFID tag design. IEEE Trans. Antennas Propag. 64, 856–864 (2016).

    Google Scholar 

  • Islam, M. R. et al. Tri circle split-ring resonator-shaped metamaterial with mathematical modeling for oil concentration sensing. IEEE Access 9, 161087–161102 (2021).

    Google Scholar 

  • Jahan, I. et al. Two split rings resonator-based perfect metamaterial absorbers with the incident and polarization angle independent for sensing applications. J. Magn. Magn. Mater. 594, 171904 (2024).

    Google Scholar 

  • Baena, J. D. et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53, 1451–1460 (2005).

    Google Scholar 

  • Khan, M. I., Fraz, Q. & Tahir, F. A. Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle. J. Appl. Phys. 121, 045103 (2017).

    Google Scholar 

  • Kim, S. et al. An RFID-enabled inkjet-printed soil moisture sensor on paper for “smart” agricultural applications. In Proc. IEEE SENSORS 1507–1510 (IEEE, 2014).

  • da Fonseca, N. S. S. M., Freire, R. C. S., Batista, A., Fontgalland, G. & Tedjini, S. A passive capacitive soil moisture and environment temperature UHF RFID based sensor for low cost agricultural applications. In Proc. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) 1–4 (IEEE, 2017).

  • Budalal, A. A. H., Islam, M. R., Abdullah, K. & Abdul Rahman, T. Modification of distance factor in rain attenuation prediction for short-range millimeter-wave links. IEEE Antennas Wirel. Propag. Lett. 19, 1027–1031 (2020).

    Google Scholar 

  • Ma, Z. & Chen, J. Adaptive path planning method for UAVs in complex environments. Int. J. Appl. Earth Obs. Geoinf. 115, 103133 (2022).

    Google Scholar 

  • Olshevsky, V. & Sakhnovich, L. Matched filtering for generalized stationary processes. IEEE Trans. Inf. Theory 51, 3308–3313 (2005).

    Google Scholar 

  • Alahnomi, R. A., Zakaria, Z., Ruslan, E., Ab Rashid, S. R. & Mohd Bahar, A. A. High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection. IEEE Sens J. 17, 2766–2775 (2017).

    Google Scholar 

  • Li, L., Bai, Y., Li, L., Wang, S. & Zhang, T. A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 29, 1702517 (2017).

    Google Scholar 

  • Diao, J. & Warnick, K. F. Poynting streamlines, effective area shape, and the design of superdirective antennas. IEEE Trans. Antennas Propag. 65, 861–866 (2017).

    Google Scholar 

  • Chen, S., Zhong, S., Yang, S. & Wang, X. A multiantenna RFID reader with blind adaptive beamforming. IEEE Internet Things J. 3, 986–996 (2016).

    Google Scholar 

  • Huang, Z. et al. Frequency division multiple access extension of standard UHF RFID systems for multiple tags inventory with successive interference cancellation. IEEE Internet Things J. 12, 19615–19630 (2025).

    Google Scholar 

  • Mamabolo, E. et al. Application of precision agriculture technologies for crop protection and soil health. Smart Agric. Technol. 12, 100808 (2025).

    Google Scholar 

  • Ramesh, Y. et al. A smart nail platform for wireless subsoil health monitoring via unmanned aerial vehicle-assisted radio frequency interrogation. HARVEST Subsoil Health Monitoring, https://doi.org/10.5281/zenodo.17819189 (2025).

  • Continue Reading