Bindraban, P. S. & Rabbinge, R. Megatrends in agriculture-views for discontinuities in past and future developments. Glob. Food Secur. 1, 99–105 (2012).
Abdo, A. I. et al. Conventional agriculture increases global warming while decreasing system sustainability. Nat. Clim. Chang 15, 110–117 (2024).
Elferink, M. & Schierhorn, F. Global demand for food is rising. Can we meet it? Harv. Bus. Rev. 7, 04 (2016).
Corwin, D. L. & Lesch, S. M. Apparent soil electrical conductivity measurements in agriculture. Comput Electron Agric. 46, 11–43 (2005).
Valin, H. et al. The future of food demand: understanding differences in global economic models. Agric. Econ. 45, 51–67 (2014).
Cassman, K. G. What do we need to know about global food security?. Glob. Food Secur. 1, 81–82 (2012).
McLaughlin, D. & Kinzelbach, W. Food security and sustainable resource management. Water Resour. Res. 51, 4966–4985 (2015).
Qadir, M., Boers, T. M., Schubert, S., Ghafoor, A. & Murtaza, G. Agricultural water management in water-starved countries: challenges and opportunities. Agric. Water Manag. 62, 165–185 (2003).
Vergopolan, N. et al. High-resolution soil moisture data reveal complex multi-scale spatial variability across the United States. Geophys. Res. Lett. 49, e2022GL098586 (2022).
Li, J., Richter, D., de, B., Mendoza, A. & Heine, P. Effects of land-use history on soil spatial heterogeneity of macro- and trace elements in the Southern Piedmont, USA. Geoderma 156, 60–73 (2010).
Zhang, N., Wang, M. & Wang, N. Precision agriculture—a worldwide overview. Comput. Electron. Agric. 36, 113–132 (2002).
Stafford, J. V. Implementing precision agriculture in the 21st century. J. Agric. Eng. Res. 76, 267–275 (2000).
Yang, C., Everitt, J. H., Du, Q., Luo, B. & Chanussot, J. Using high-resolution airborne and satellite imagery to assess crop growth and yield variability for precision agriculture. Proc. IEEE 101, 582–592 (2013).
Di Gennaro, S. F. et al. Spectral comparison of UAV-based hyper and multispectral cameras for precision viticulture. Remote Sens. 14, 449 (2022).
Yu, H., Kong, B., Wang, G., Du, R. & Qie, G. Prediction of soil properties using a hyperspectral remote sensing method. Arch. Agron. Soil Sci. 64, 546–559 (2018).
Syrový, T. et al. Fully printed disposable IoT soil moisture sensors for precision agriculture. Chemosensors 8, 1–14 (2020).
Babaeian, E. et al. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 57, 530–616 (2019).
Albornoz, C. & Giraldo, L. F. Trajectory design for efficient crop irrigation with a UAV. In proc. IEEE 3rd Colombian Conference on Automatic Control (CCAC) 1–6 (IEEE, 2017).
Marios, S. & Georgiou, J. Precision agriculture: challenges in sensors and electronics for real-time soil and plant monitoring. In proc. IEEE Biomedical Circuits and Systems Conference (BioCAS) 1–4 (IEEE, 2017).
Walker, J. P., Willgoose, G. R. & Kalma, J. D. In situ measurement of soil moisture: a comparison of techniques. J. Hydrol. 293, 85–99 (2004).
Wu, X. & Liu, M. In-situ soil moisture sensing: measurement scheduling and estimation using compressive sensing. In Proc. ACM/IEEE International Conference on Information Processing in Sensor Networks 1–12 (IEEE, 2012).
Franko, U. & Mirschel, W. Integration of a crop growth model with a model of soil dynamics. Agron. J. 93, 666–670 (2001).
Marschner, P. & Rengel, Z. Nutrient availability in soils. in Mineral Nutrition of Higher Plants 315–330 Ch. 12 (Academic Press, 2012).
Lund, E. D., Colin, P. E., Christy, D. & Drummond, P. E. Applying soil electrical conductivity technology to precision agriculture. In Proc. Fourth International Conference on Precision Agriculture (eds Robert, P. C., Rust, R. H. & Larson, W. E.) (ASA, CSSA, and SSSA Books, 1999).
Visconti, F., de Paz, J. M., Martínez, D. & Molina, M. J. Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils. Agric. Water Manag. 132, 111–119 (2014).
Segovia-Cardozo, D. A., Franco, L. & Provenzano, G. Detecting crop water requirement indicators in irrigated agroecosystems from soil water content profiles: an application for a citrus orchard. Sci. Total Environ. 806, 150492 (2022).
Xu, Z. et al. Flat thin mm-sized soil moisture sensor (MSMS) fabricated by gold compact discs etching for real-time in situ profiling. Sens. Actuators B Chem. 255, 1166–1172 (2018).
Gopalakrishnan, S. et al. Battery-less wireless chipless sensor tag for subsoil moisture monitoring. IEEE Sens. J. 21, 6071–6082 (2021).
Gopalakrishnan, S. et al. A biodegradable chipless sensor for wireless subsoil health monitoring. Sci. Rep. 12, 1–12 (2022).
Hasan, A., Bhattacharyya, R. & Sarma, S. E. Towards pervasive soil moisture sensing using RFID tag antenna-based sensors. In Proc. IEEE Int. Conf. RFID-Technology and Applications (RFID-TA), (IEEE, 2015).
Hasan, A. Bhattacharyya, R. & Sarma, S. E. A monopole-coupled RFID sensor for pervasive soil moisture monitoring. In Proc. IEEE Antennas and Propagation Society International Symposium (APSURSI) (IEEE, 2013).
Alsultan, M. A., Melià-Seguí, J., Parrón-Granados, J. & López-Soriano, S. A battery-less UHF RFID sensor for soil moisture monitoring. IEEE J. Radio Frequency Identif. 9, 286–294 (2025).
Zuffanelli, S. et al. Analysis of the Split Ring Resonator (SRR) antenna applied to passive UHF-RFID tag design. IEEE Trans. Antennas Propag. 64, 856–864 (2016).
Islam, M. R. et al. Tri circle split-ring resonator-shaped metamaterial with mathematical modeling for oil concentration sensing. IEEE Access 9, 161087–161102 (2021).
Jahan, I. et al. Two split rings resonator-based perfect metamaterial absorbers with the incident and polarization angle independent for sensing applications. J. Magn. Magn. Mater. 594, 171904 (2024).
Baena, J. D. et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53, 1451–1460 (2005).
Khan, M. I., Fraz, Q. & Tahir, F. A. Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle. J. Appl. Phys. 121, 045103 (2017).
Kim, S. et al. An RFID-enabled inkjet-printed soil moisture sensor on paper for “smart” agricultural applications. In Proc. IEEE SENSORS 1507–1510 (IEEE, 2014).
da Fonseca, N. S. S. M., Freire, R. C. S., Batista, A., Fontgalland, G. & Tedjini, S. A passive capacitive soil moisture and environment temperature UHF RFID based sensor for low cost agricultural applications. In Proc. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) 1–4 (IEEE, 2017).
Budalal, A. A. H., Islam, M. R., Abdullah, K. & Abdul Rahman, T. Modification of distance factor in rain attenuation prediction for short-range millimeter-wave links. IEEE Antennas Wirel. Propag. Lett. 19, 1027–1031 (2020).
Ma, Z. & Chen, J. Adaptive path planning method for UAVs in complex environments. Int. J. Appl. Earth Obs. Geoinf. 115, 103133 (2022).
Olshevsky, V. & Sakhnovich, L. Matched filtering for generalized stationary processes. IEEE Trans. Inf. Theory 51, 3308–3313 (2005).
Alahnomi, R. A., Zakaria, Z., Ruslan, E., Ab Rashid, S. R. & Mohd Bahar, A. A. High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection. IEEE Sens J. 17, 2766–2775 (2017).
Li, L., Bai, Y., Li, L., Wang, S. & Zhang, T. A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 29, 1702517 (2017).
Diao, J. & Warnick, K. F. Poynting streamlines, effective area shape, and the design of superdirective antennas. IEEE Trans. Antennas Propag. 65, 861–866 (2017).
Chen, S., Zhong, S., Yang, S. & Wang, X. A multiantenna RFID reader with blind adaptive beamforming. IEEE Internet Things J. 3, 986–996 (2016).
Huang, Z. et al. Frequency division multiple access extension of standard UHF RFID systems for multiple tags inventory with successive interference cancellation. IEEE Internet Things J. 12, 19615–19630 (2025).
Mamabolo, E. et al. Application of precision agriculture technologies for crop protection and soil health. Smart Agric. Technol. 12, 100808 (2025).
Ramesh, Y. et al. A smart nail platform for wireless subsoil health monitoring via unmanned aerial vehicle-assisted radio frequency interrogation. HARVEST Subsoil Health Monitoring, https://doi.org/10.5281/zenodo.17819189 (2025).