Enhanced UV resistance of polypropylene via copper nanoparticle incorporation for outdoor applications

  • Bouiadjra, B. A. B. et al. Thermal stability and mechanical characterization of oyster shell reinforced recycled polypropylene biocomposite. J. Reinf. Plast. Compos. https://doi.org/10.1177/07316844241273006 (2024).

    Google Scholar 

  • Albedah, A. et al. Potential of recycled polypropylene: A study on effect of natural fiber on the morphology and properties of biocomposite. J. King Saud Univ. Sci. 36 (5), 103167. https://doi.org/10.1016/J.JKSUS.2024.103167 (2024).

    Google Scholar 

  • Yousif, E. & Haddad, R. Photodegradation and photostabilization of Polymers, especially polystyrene. Rev. Springerplus. 2 (1), 398. https://doi.org/10.1186/2193-1801-2-398 (2013).

    Google Scholar 

  • UV Degradation Effects in Materials – An Elementary Overview – UV Solutions. https://uvsolutionsmag.com/articles/2019/uv-degradation-effects-in-materials-an-elementary-overview/ (accessed 2025-06-16).

  • Gao, Q. et al. Flame Retardant, combustion and thermal degradation properties of polypropylene composites treated with the mixture of Pentaerythritol, nickel hydroxystannate and expandable graphite. Polym. Degrad. Stab. 203, 110084. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2022.110084 (2022).

    Google Scholar 

  • Liu, N. et al. Stabilizer intercalated layered double hydroxide to enhance the thermal and UV degradation resistance of polypropylene fiber. Polym. Test. 121, 107979. https://doi.org/10.1016/J.POLYMERTESTING.2023.107979 (2023).

    Google Scholar 

  • Markus, K., Kirschbaum, T., Metzsch-Zilligen, E. & Pfaendner, R. Performance of novel biobased stabilizers: Long-Term thermal and UV stability of polypropylene. Polym. Degrad. Stab. 238, 111348. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2025.111348 (2025).

    Google Scholar 

  • Kumari, S. et al. Enhancing UV protection and antimicrobial properties in food packaging through the use of copper nanoparticles and κ-Carrageenan based nanocomposite film. J. Inorg. Organomet. Polym. Mater. 34 (11), 5538–5550. https://doi.org/10.1007/S10904-024-03231-Z/METRICS (2024).

    Google Scholar 

  • Boruah, G., Phukan, A. R., Kalita, B., Gangwar, A. K. S. & Jose, S. Antimicrobial and UV protection finishing of cotton fabric with copper nanoparticles synthesized using S.Cumini leaf extract. Clean. Technol. Environ. Policy. 27 (5), 2043–2053. https://doi.org/10.1007/S10098-024-02933-9/METRICS (2024).

    Google Scholar 

  • Mohamed, E. A. Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon 6 (1), e03123. https://doi.org/10.1016/J.HELIYON.2019.E03123 (2020).

    Google Scholar 

  • Khalifa, M., Lammer, H., Gadad, M. S., Varsavas, S. D. & Weng, Z. Recent advances on Copper/Polymer nanocomposites: processing Strategies, Mechanisms, and antibacterial efficacy. Eur. Polym. J. 223, 113637. https://doi.org/10.1016/J.EURPOLYMJ.2024.113637 (2025).

    Google Scholar 

  • Marković, D. et al. Novel antimicrobial nanocomposite based on polypropylene Non-Woven Fabric, biopolymer alginate and copper oxides nanoparticles. Appl. Surf. Sci. 527, 146829. https://doi.org/10.1016/J.APSUSC.2020.146829 (2020).

    Google Scholar 

  • Abdo, H. S., Khalil, K. A., Al-Deyab, S. S., Altaleb, H. & Sherif, E. S. M. Antibacterial effect of carbon nanofibers containing ag nanoparticles. Fibers Polym. 14 (12), 1985–1992. https://doi.org/10.1007/S12221-013-1985-3/METRICS (2013).

    Google Scholar 

  • Kanwal, J. et al. Fabrication of Aramid-Based antimicrobial polypropylene composite membranes functionalized with Thiazolidine-Based nanoparticles. RSC Adv. 15 (21), 16607–16621. https://doi.org/10.1039/D5RA00748H (2025).

    Google Scholar 

  • Calais, G. B. et al. Bioactive textile coatings for improved viral protection: A study of polypropylene masks coated with copper salt and organic antimicrobial agents. Appl. Surf. Sci. 638, 158112. https://doi.org/10.1016/J.APSUSC.2023.158112 (2023).

    Google Scholar 

  • Gil, L. D., Monteiro, S. N. & Colorado, H. A. Polymer matrix nanocomposites fabricated with copper nanoparticles and photopolymer resin via vat photopolymerization additive manufacturing. Polym. 2024. 16, Page 2434 (17), 2434. https://doi.org/10.3390/POLYM16172434 (2024). 16.

    Google Scholar 

  • Enhancing Polymer Nanocomposites with Copper Nanoparticles via UV-Photopolymerization. https://www.azonano.com/news.aspx?newsID=41038 (accessed 2025-06-16).

  • Chen, S. et al. Preparation and ageing resistance enhancement of RP/SBS composite asphalt by heterostructure copper oxalate Nanoparticles/Recycled polypropylene fiber. Constr. Build. Mater. 473, 140992. https://doi.org/10.1016/J.CONBUILDMAT.2025.140992 (2025).

    Google Scholar 

  • Solomon, M. M. et al. Experimental and theoretical insights to enhanced Inhibition of copper corrosion in a typical pickling environment by polyethylene oxide-b-Polypropylene oxide Copolymer-Based hybrid inhibitor. J. Environ. Chem. Eng. 13 (2), 116055. https://doi.org/10.1016/J.JECE.2025.116055 (2025).

    Google Scholar 

  • Abdo, H. S. et al. Ecofriendly Biochar as a Low-Cost Solid Lubricating Filler for LDPE Sustainable Biocomposites: Thermal, Mechanical, and Tribological Characterization. Int J Polym Sci 2023 (1), 2445472. (2023). https://doi.org/10.1155/2023/2445472

  • Alnaser, I. A. et al. Enhancing the Tribo-Mechanical performance of LDPE nanocomposites utilizing low loading fraction Al2O3/SiC hybrid nanostructured oxide fillers. Inorganics 2023. 11, Page 354 (9), 354. https://doi.org/10.3390/INORGANICS11090354 (2023). 11.

    Google Scholar 

  • Meena, R. et al. Influence of fly Ash on Thermo-Mechanical and mechanical behavior of injection molded polypropylene matrix composites. Chemosphere 343, 140225. https://doi.org/10.1016/J.CHEMOSPHERE.2023.140225 (2023).

    Google Scholar 

  • Yang, T. et al. Enhanced crosslinking of polypropylene in γ-Irradiation via Copper(Ⅱ) doping. Radiat. Phys. Chem. 194, 110042. https://doi.org/10.1016/J.RADPHYSCHEM.2022.110042 (2022).

    Google Scholar 

  • Tsai, C. Y., Zhang, T., Zhao, M., Chang, C. S. & Sue, H. J. Preparation of thermally conductive but electrically insulated polypropylene containing copper nanowire. Polym. (Guildf). 236, 124317. https://doi.org/10.1016/J.POLYMER.2021.124317 (2021).

    Google Scholar 

  • Lee, C. H., Sapuan, S. M., Lee, J. H. & Hassan, M. R. Melt volume flow rate and melt flow rate of Kenaf fibre reinforced Floreon/Magnesium hydroxide biocomposites. Springerplus 5 (1), 1–6. https://doi.org/10.1186/S40064-016-3044-1/FIGURES/4 (2016).

    Google Scholar 

  • Singh, B. et al. Investigations on melt flow rate and tensile behaviour of Single, double and Triple-Sized copper reinforced thermoplastic composites. Mater. 2021. 14, Page 3504 (13), 3504. https://doi.org/10.3390/MA14133504 (2021). 14.

    Google Scholar 

  • Mubarak, Y. A., Abbadi, F. O. & Tobgy, A. H. Effect of iron oxide nanoparticles on the morphological properties of isotactic polypropylene. J. Appl. Polym. Sci. 115 (6), 3423–3433. https://doi.org/10.1002/APP.31374 (2010).

    Google Scholar 

  • Zeng, Y. et al. Effect of silver nanoparticles on the melting Behavior, isothermal crystallization kinetics and morphology of polyoxymethylene. Cryst. 2020. 10, Page 594 (7), 594. https://doi.org/10.3390/CRYST10070594 (2020). 10.

    Google Scholar 

  • Mirjalili, F., Chuah, L. & Salahi, E. Mechanical and Morphological Properties of Polypropylene/Nano α-Al2O3 Composites. The Scientific World Journal 2014, 718765. (2014). https://doi.org/10.1155/2014/718765

  • Rodriguez, A. K., Mansoor, B., Ayoub, G., Colin, X. & Benzerga, A. A. Effect of UV-Aging on the mechanical and fracture behavior of low density polyethylene. Polym. Degrad. Stab. 180, 109185. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2020.109185 (2020).

    Google Scholar 

  • Continue Reading