Xu, Z. et al. NLRP inflammasomes in health and disease. Mol. Biomed. 5 (1), 14 (2024).
Carroll, K., Sawden, M. & Sharma, S. DAMPs, PAMPs, NLRs, RIGs, CLRs and TLRs–Understanding the alphabet soup in the context of bone biology. Curr. Osteoporos. Rep. 23 (1), 6 (2025).
Zheng, D., Liwinski, T. & Elinav, E. Inflammasome activation and regulation: toward a better Understanding of complex mechanisms. Cell. Discovery. 6 (1), 36 (2020).
Fusco, R. et al. Focus on the role of NLRP3 inflammasome in diseases. Int. J. Mol. Sci. 21 (12), 4223 (2020).
Van de Veerdonk, F. L. et al. Inflammasome activation and IL-1β and IL-18 processing during infection. Trends Immunol. 32 (3), 110–116 (2011).
Dadkhah, M. & Sharifi, M. The NLRP3 inflammasome: mechanisms of activation, regulation, and role in diseases. Int. Rev. Immunol. 44 (2), 98–111 (2025).
Jurcău, M. C. et al. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of alzheimer’s disease: therapeutic implications and future perspectives. Antioxidants 11 (11), 2167 (2022).
Li, Y. et al. Targeting microglial α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in parkinson’s disease. Front. Immunol. 12, 719807 (2021).
Nasoohi, S., Parveen, K. & Ishrat, T. Metabolic syndrome, brain insulin resistance, and alzheimer’s disease: thioredoxin interacting protein (TXNIP) and inflammasome as core amplifiers. J. Alzheimer’s Disease. 66 (3), 857–885 (2018).
Boršić, E. et al. Clustering of NLRP3 induced by membrane or protein scaffolds promotes inflammasome assembly. Nat. Commun. 16 (1), 4887 (2025).
Fu, J. & Wu, H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol. 41 (1), 301–316 (2023).
Zhang, X. et al. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases. Int. J. Mol. Med. 51 (4), 35 (2023).
Kennedy, C. R. et al. A probe for NLRP3 inflammasome inhibitor MCC950 identifies carbonic anhydrase 2 as a novel target. ACS Chem. Biol. 16 (6), 982–990 (2021).
Patel, V. & Shah, M. Artificial intelligence and machine learning in drug discovery and development. Intell. Med. 2 (3), 134–140 (2022).
Daroch, A. & Purohit, R. MDbDMRP: A novel molecular descriptor-based computational model to identify drug-miRNA relationships. Int. J. Biol. Macromol. 287, 138580 (2025).
Sharma, B. & Purohit, R. Enhanced sampling simulations to explore Himalayan phytochemicals as potential phosphodiesterase-1 inhibitor for neurological disorders. Biochem. Biophys. Res. Commun. 758, 151614 (2025).
Singh, R. & Purohit, R. Determining the effect of natural compounds on mutations of Pyrazinamidase in multidrug-resistant tuberculosis: illuminating the dark tunnel. Biochem. Biophys. Res. Commun. 756, 151575 (2025).
Gupta, A., Thind, A. S. & Purohit, R. EGFR AP: a predictive machine learning model for assessing small molecule activity against the epidermal growth factor receptor. RSC Med. Chem. 16 (9), 4415–4426 (2025).
Hayat, C. et al. Identification of new potent NLRP3 inhibitors by multi-level in-silico approaches. BMC Chem. 18 (1), 76 (2024).
Pinheiro, G. A. et al. Machine learning prediction of nine molecular properties based on the SMILES representation of the QM9 quantum-chemistry dataset. J. Phys. Chem. A. 124 (47), 9854–9866 (2020).
Kaneko, H. Molecular descriptors, structure generation, and inverse QSAR/QSPR based on SELFIES. ACS Omega. 8 (24), 21781–21786 (2023).
Samkhaniani, M. et al. A machine learning approach to feature selection and uncertainty analysis for biogas production in wastewater treatment plants. Waste Manage. 197, 14–24 (2025).
Pantic, I. & Paunovic Pantic, J. Artificial intelligence in chromatin analysis: A random forest model enhanced by fractal and wavelet features. Fractal Fract. 8 (8), 490 (2024).
Ishfaq, M. et al. Multinomial classification of NLRP3 inhibitory compounds based on large scale machine learning approaches. Mol. Diversity. 28 (4), 1849–1868 (2024).
Mehrabinezhad, A., Teshnehlab, M. & Sharifi, A. A comparative study to examine principal component analysis and kernel principal component analysis-based weighting layer for convolutional neural networks. Comput. Methods Biomech. Biomedical Engineering: Imaging Visualization. 12 (1), 2379526 (2024).
Abdul-Al, M. et al. A novel approach to enhancing multi-modal facial recognition: integrating convolutional neural networks, principal component analysis, and sequential neural networks. IEEE Access. 12 (2024).
Haji, A. Comparative analysis of autoencoder and PCA for dimensionality reduction in gene expression data. (2024).
Kaib, M. T. H. et al. Data size reduction approach for nonlinear process monitoring refinement using kernel PCA technique. Expert Syst. Appl. 274, 126975 (2025).
Makkulau, M. et al. Variance The Estimation Eigen Value of Principal Component Analysis and Nonlinear Principal Component Analysis. in ITM Web of Conferences. EDP Sciences. (2024).
Frost, H. R. Eigenvectors from eigenvalues sparse principal component analysis (EESPCA). J. Comput. Graphical Statistics: Joint Publication Am. Stat. Association Inst. Math. Stat. Interface Foundation North. Am. 31 (2), 486 (2021).
Eze, N. M., Asogwa, O. C. & Eze, C. M. Principal component factor analysis of some development factors in Southern Nigeria and its extension to regression analysis. J. Adv. Math. Comput. Sci. 36 (3), 132–160 (2021).
Abdulhafedh, A. Incorporating k-means, hierarchical clustering and Pca in customer segmentation. J. City Dev. 3 (1), 12–30 (2021).
Niazi, S. K. & Mariam, Z. Recent advances in machine-learning-based chemoinformatics: a comprehensive review. Int. J. Mol. Sci. 24 (14), 11488 (2023).
Wani, M. A. & Roy, K. K. Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents. Mol. Diversity. 26 (3), 1345–1356 (2022).
Shrivastava, T., Singh, V. & Agrawal, A. Autism spectrum disorder detection with kNN imputer and machine learning classifiers via questionnaire mode of screening. Health Inform. Sci. Syst. 12 (1), 18 (2024).
Almatroudi, A. Integrative machine learning, virtual screening, and molecular modeling for BacA-Targeted Anti-Biofilm drug discovery against Staphylococcal infections. Crystals 14 (12), 1057 (2024).
Zhang, H. et al. Machine learning methods for weather forecasting: A survey. Atmosphere 16 (1), 82 (2025).
Salama, M. Optimization of regression models using machine learning: A comprehensive study with scikit-learn. Optimization of Regression Models Using Machine Learning: A Comprehensive Study with Scikit-learn| IUSRJ, 5. (2024).
Alemerien, K., Alsarayreh, S. & Altarawneh, E. Diagnosing cardiovascular diseases using optimized machine learning algorithms with GridSearchCV. J. Appl. Data Sci. 5 (4), 1539–1552 (2024).
Padhy, S. & SMOTE-based Deep, L. S. T. M. System with GridSearchCV optimization for intelligent diabetes diagnosis. J. Electr. Syst. 20 (7s), 804–815 (2024).
Mumtaz, A. et al. MPD3: a useful medicinal plants database for drug designing. Nat. Prod. Res. 31 (11), 1228–1236 (2017).
Aloufi, B. H., Snoussi, M. & Sulieman, A. M. E. Antiviral efficacy of selected natural phytochemicals against SARS-CoV-2 Spike glycoprotein using structure-based drug designing. Molecules 27 (8), 2401 (2022).
El-Hachem, N. et al. AutoDock and AutoDockTools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study, in Neuroproteomics: Methods and Protocols. Springer.391–403. (2017).
Zayed, A. O. H. Optimizing protein-ligand Docking through machine learning: algorithm selection with AutoDock Vina. Discover Chem. 2 (1), 164 (2025).
Kaur, J., Kaur, S. & andSingh Rational modification of the lead molecule: enhancement in the anticancer and dihydrofolate reductase inhibitory activity. Bioorg. Med. Chem. Lett. 26 (8), 1936–1940 (2016).
Berendsen, H. J., van der Spoel, D. & van Drunen, R. A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91 (1–3), 43–56 (1995).
Huang, J. & MacKerell, A. D. Jr CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34 (25), 2135–2145 (2013).
Mishra, S. et al. Classical molecular dynamics simulation identifies catechingallate as a promising antiviral polyphenol against MPOX palmitoylated surface protein. Comput. Biol. Chem. 110, 108070 (2024).
Ramsey, I. S. et al. An aqueous H + permeation pathway in the voltage-gated proton channel Hv1. Nat. Struct. Mol. Biol. 17 (7), 869–875 (2010).
Kognole, A. A. et al. CHARMM-GUI Drude Prepper for molecular dynamics simulation using the classical Drude polarizable force field. J. Comput. Chem. 43 (5), 359–375 (2022).
Jawad, B. et al. Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: combination of molecular dynamics simulation and density functional calculation. J. Chem. Inf. Model. 61 (9), 4425–4441 (2021).
Gilson, M. K. & Zhou, H. X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct. 36 (1), 21–42 (2007).
Du, X. et al. Insights into protein–ligand interactions: mechanisms, models, and methods. Int. J. Mol. Sci. 17 (2), 144 (2016).
Yasir, M. et al. Investigating the inhibitory potential of flavonoids against aldose reductase: insights from molecular docking, dynamics simulations, and gmx_MMPBSA analysis. Curr. Issues. Mol. Biol. 46 (10), 11503–11518 (2024).
Kadhum, L. H. Geometry optimization of coupling allin-metformin using dft/b3lyp molecular modelling technique: geometry optimization of coupling allin-metformin using dft/b3lyp molecular modelling technique. Iraqi J. Market Res. Consumer Prot. 13 (2), 89–100 (2021).
El Addali, A. et al. Theoretical study of the phosphate units stability by the Dft b3lyp/6-311 g quantum method. J. Chem. Technol. 31 (3), 477–485 (2023).
Mackay, A. et al. Discovery of NP3-253, a potent brain penetrant inhibitor of the NLRP3 inflammasome. J. Med. Chem. 67 (23), 20780–20798 (2024).
Bağlan, M., Gören, K. & Yıldıko, Ü. MEP analysis and molecular Docking using DFT calculations in DFPA molecule. Int. J. Chem. Technol. 7 (1), 38–47 (2023).
Taher, S. R. & Hamad, W. M. Synthesis, characterization, density functional theory (DFT) analysis, and mesomorphic study of new thiazole derivatives. Bull. Chem. Soc. Ethiop. 38 (6), 1827–1842 (2024).
Stuart, J. G. & Jebaraj, J. W. Synthesis, characterisation, in Silico molecular Docking and DFT studies of 2, 6-bis (4-hydroxy-3-methoxyphenyl)-3, 5-dimethylpiperidin-4-one. Indian J. Chem. (IJC). 62 (10), 1061–1080 (2023).
Andonova, V. et al. Spectral characteristics, in Silico perspectives, density functional theory (DFT), and therapeutic potential of green-extracted phycocyanin from spirulina. Int. J. Mol. Sci. 25 (17), 9170 (2024).
Wu, S. et al. Theoretical study on the adsorption of Sulforaphane on B 12 N 12-related nanocages based on density functional theory. New J. Chem. 47 (47), 21743–21752 (2023).
Khalid, M. et al. Exploration of noncovalent interactions, chemical reactivity, and nonlinear optical properties of Piperidone derivatives: a concise theoretical approach. ACS Omega. 5 (22), 13236–13249 (2020).
Solgun, D. G. et al. Synthesis of axially silicon phthalocyanine substituted with bis-(3, 4-dimethoxyphenethoxy) groups, DFT and molecular Docking studies. J. Incl. Phenom. Macrocyclic Chem. 102 (11), 851–860 (2022).
Ganiev, B., Mardonov, U. & Kholikova, G. Molecular structure, HOMO-LUMO, MEP-–Analysis of triazine compounds using DFT (B3LYP) calculations. Materials Today: Proceedings, (2023).
Pardridge, W. M. Drug transport across the blood–brain barrier. J. Cereb. Blood flow. Metabolism. 32 (11), 1959–1972 (2012).
Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discovery. 6 (11), 881–890 (2007).