An integrative computational approach for identification of NLRP3 inhibitors through machine learning, docking, dynamics and DFT analysis

  • Xu, Z. et al. NLRP inflammasomes in health and disease. Mol. Biomed. 5 (1), 14 (2024).

    Google Scholar 

  • Carroll, K., Sawden, M. & Sharma, S. DAMPs, PAMPs, NLRs, RIGs, CLRs and TLRs–Understanding the alphabet soup in the context of bone biology. Curr. Osteoporos. Rep. 23 (1), 6 (2025).

    Google Scholar 

  • Zheng, D., Liwinski, T. & Elinav, E. Inflammasome activation and regulation: toward a better Understanding of complex mechanisms. Cell. Discovery. 6 (1), 36 (2020).

    Google Scholar 

  • Fusco, R. et al. Focus on the role of NLRP3 inflammasome in diseases. Int. J. Mol. Sci. 21 (12), 4223 (2020).

    Google Scholar 

  • Van de Veerdonk, F. L. et al. Inflammasome activation and IL-1β and IL-18 processing during infection. Trends Immunol. 32 (3), 110–116 (2011).

    Google Scholar 

  • Dadkhah, M. & Sharifi, M. The NLRP3 inflammasome: mechanisms of activation, regulation, and role in diseases. Int. Rev. Immunol. 44 (2), 98–111 (2025).

    Google Scholar 

  • Jurcău, M. C. et al. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of alzheimer’s disease: therapeutic implications and future perspectives. Antioxidants 11 (11), 2167 (2022).

    Google Scholar 

  • Li, Y. et al. Targeting microglial α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in parkinson’s disease. Front. Immunol. 12, 719807 (2021).

    Google Scholar 

  • Nasoohi, S., Parveen, K. & Ishrat, T. Metabolic syndrome, brain insulin resistance, and alzheimer’s disease: thioredoxin interacting protein (TXNIP) and inflammasome as core amplifiers. J. Alzheimer’s Disease. 66 (3), 857–885 (2018).

    Google Scholar 

  • Boršić, E. et al. Clustering of NLRP3 induced by membrane or protein scaffolds promotes inflammasome assembly. Nat. Commun. 16 (1), 4887 (2025).

    Google Scholar 

  • Fu, J. & Wu, H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol. 41 (1), 301–316 (2023).

    Google Scholar 

  • Zhang, X. et al. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases. Int. J. Mol. Med. 51 (4), 35 (2023).

    Google Scholar 

  • Kennedy, C. R. et al. A probe for NLRP3 inflammasome inhibitor MCC950 identifies carbonic anhydrase 2 as a novel target. ACS Chem. Biol. 16 (6), 982–990 (2021).

    Google Scholar 

  • Patel, V. & Shah, M. Artificial intelligence and machine learning in drug discovery and development. Intell. Med. 2 (3), 134–140 (2022).

    Google Scholar 

  • Daroch, A. & Purohit, R. MDbDMRP: A novel molecular descriptor-based computational model to identify drug-miRNA relationships. Int. J. Biol. Macromol. 287, 138580 (2025).

    Google Scholar 

  • Sharma, B. & Purohit, R. Enhanced sampling simulations to explore Himalayan phytochemicals as potential phosphodiesterase-1 inhibitor for neurological disorders. Biochem. Biophys. Res. Commun. 758, 151614 (2025).

    Google Scholar 

  • Singh, R. & Purohit, R. Determining the effect of natural compounds on mutations of Pyrazinamidase in multidrug-resistant tuberculosis: illuminating the dark tunnel. Biochem. Biophys. Res. Commun. 756, 151575 (2025).

    Google Scholar 

  • Gupta, A., Thind, A. S. & Purohit, R. EGFR AP: a predictive machine learning model for assessing small molecule activity against the epidermal growth factor receptor. RSC Med. Chem. 16 (9), 4415–4426 (2025).

    Google Scholar 

  • Hayat, C. et al. Identification of new potent NLRP3 inhibitors by multi-level in-silico approaches. BMC Chem. 18 (1), 76 (2024).

    Google Scholar 

  • Pinheiro, G. A. et al. Machine learning prediction of nine molecular properties based on the SMILES representation of the QM9 quantum-chemistry dataset. J. Phys. Chem. A. 124 (47), 9854–9866 (2020).

    Google Scholar 

  • Kaneko, H. Molecular descriptors, structure generation, and inverse QSAR/QSPR based on SELFIES. ACS Omega. 8 (24), 21781–21786 (2023).

    Google Scholar 

  • Samkhaniani, M. et al. A machine learning approach to feature selection and uncertainty analysis for biogas production in wastewater treatment plants. Waste Manage. 197, 14–24 (2025).

    Google Scholar 

  • Pantic, I. & Paunovic Pantic, J. Artificial intelligence in chromatin analysis: A random forest model enhanced by fractal and wavelet features. Fractal Fract. 8 (8), 490 (2024).

    Google Scholar 

  • Ishfaq, M. et al. Multinomial classification of NLRP3 inhibitory compounds based on large scale machine learning approaches. Mol. Diversity. 28 (4), 1849–1868 (2024).

    Google Scholar 

  • Mehrabinezhad, A., Teshnehlab, M. & Sharifi, A. A comparative study to examine principal component analysis and kernel principal component analysis-based weighting layer for convolutional neural networks. Comput. Methods Biomech. Biomedical Engineering: Imaging Visualization. 12 (1), 2379526 (2024).

    Google Scholar 

  • Abdul-Al, M. et al. A novel approach to enhancing multi-modal facial recognition: integrating convolutional neural networks, principal component analysis, and sequential neural networks. IEEE Access. 12 (2024).

  • Haji, A. Comparative analysis of autoencoder and PCA for dimensionality reduction in gene expression data. (2024).

  • Kaib, M. T. H. et al. Data size reduction approach for nonlinear process monitoring refinement using kernel PCA technique. Expert Syst. Appl. 274, 126975 (2025).

    Google Scholar 

  • Makkulau, M. et al. Variance The Estimation Eigen Value of Principal Component Analysis and Nonlinear Principal Component Analysis. in ITM Web of Conferences. EDP Sciences. (2024).

  • Frost, H. R. Eigenvectors from eigenvalues sparse principal component analysis (EESPCA). J. Comput. Graphical Statistics: Joint Publication Am. Stat. Association Inst. Math. Stat. Interface Foundation North. Am. 31 (2), 486 (2021).

    Google Scholar 

  • Eze, N. M., Asogwa, O. C. & Eze, C. M. Principal component factor analysis of some development factors in Southern Nigeria and its extension to regression analysis. J. Adv. Math. Comput. Sci. 36 (3), 132–160 (2021).

    Google Scholar 

  • Abdulhafedh, A. Incorporating k-means, hierarchical clustering and Pca in customer segmentation. J. City Dev. 3 (1), 12–30 (2021).

    Google Scholar 

  • Niazi, S. K. & Mariam, Z. Recent advances in machine-learning-based chemoinformatics: a comprehensive review. Int. J. Mol. Sci. 24 (14), 11488 (2023).

    Google Scholar 

  • Wani, M. A. & Roy, K. K. Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents. Mol. Diversity. 26 (3), 1345–1356 (2022).

    Google Scholar 

  • Shrivastava, T., Singh, V. & Agrawal, A. Autism spectrum disorder detection with kNN imputer and machine learning classifiers via questionnaire mode of screening. Health Inform. Sci. Syst. 12 (1), 18 (2024).

    Google Scholar 

  • Almatroudi, A. Integrative machine learning, virtual screening, and molecular modeling for BacA-Targeted Anti-Biofilm drug discovery against Staphylococcal infections. Crystals 14 (12), 1057 (2024).

    Google Scholar 

  • Zhang, H. et al. Machine learning methods for weather forecasting: A survey. Atmosphere 16 (1), 82 (2025).

    Google Scholar 

  • Salama, M. Optimization of regression models using machine learning: A comprehensive study with scikit-learn. Optimization of Regression Models Using Machine Learning: A Comprehensive Study with Scikit-learn| IUSRJ, 5. (2024).

  • Alemerien, K., Alsarayreh, S. & Altarawneh, E. Diagnosing cardiovascular diseases using optimized machine learning algorithms with GridSearchCV. J. Appl. Data Sci. 5 (4), 1539–1552 (2024).

    Google Scholar 

  • Padhy, S. & SMOTE-based Deep, L. S. T. M. System with GridSearchCV optimization for intelligent diabetes diagnosis. J. Electr. Syst. 20 (7s), 804–815 (2024).

    Google Scholar 

  • Mumtaz, A. et al. MPD3: a useful medicinal plants database for drug designing. Nat. Prod. Res. 31 (11), 1228–1236 (2017).

    Google Scholar 

  • Aloufi, B. H., Snoussi, M. & Sulieman, A. M. E. Antiviral efficacy of selected natural phytochemicals against SARS-CoV-2 Spike glycoprotein using structure-based drug designing. Molecules 27 (8), 2401 (2022).

    Google Scholar 

  • El-Hachem, N. et al. AutoDock and AutoDockTools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study, in Neuroproteomics: Methods and Protocols. Springer.391–403. (2017).

  • Zayed, A. O. H. Optimizing protein-ligand Docking through machine learning: algorithm selection with AutoDock Vina. Discover Chem. 2 (1), 164 (2025).

    Google Scholar 

  • Kaur, J., Kaur, S. & andSingh Rational modification of the lead molecule: enhancement in the anticancer and dihydrofolate reductase inhibitory activity. Bioorg. Med. Chem. Lett. 26 (8), 1936–1940 (2016).

    Google Scholar 

  • Berendsen, H. J., van der Spoel, D. & van Drunen, R. A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91 (1–3), 43–56 (1995).

    Google Scholar 

  • Huang, J. & MacKerell, A. D. Jr CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34 (25), 2135–2145 (2013).

    Google Scholar 

  • Mishra, S. et al. Classical molecular dynamics simulation identifies catechingallate as a promising antiviral polyphenol against MPOX palmitoylated surface protein. Comput. Biol. Chem. 110, 108070 (2024).

    Google Scholar 

  • Ramsey, I. S. et al. An aqueous H + permeation pathway in the voltage-gated proton channel Hv1. Nat. Struct. Mol. Biol. 17 (7), 869–875 (2010).

    Google Scholar 

  • Kognole, A. A. et al. CHARMM-GUI Drude Prepper for molecular dynamics simulation using the classical Drude polarizable force field. J. Comput. Chem. 43 (5), 359–375 (2022).

    Google Scholar 

  • Jawad, B. et al. Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: combination of molecular dynamics simulation and density functional calculation. J. Chem. Inf. Model. 61 (9), 4425–4441 (2021).

    Google Scholar 

  • Gilson, M. K. & Zhou, H. X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct. 36 (1), 21–42 (2007).

    Google Scholar 

  • Du, X. et al. Insights into protein–ligand interactions: mechanisms, models, and methods. Int. J. Mol. Sci. 17 (2), 144 (2016).

    Google Scholar 

  • Yasir, M. et al. Investigating the inhibitory potential of flavonoids against aldose reductase: insights from molecular docking, dynamics simulations, and gmx_MMPBSA analysis. Curr. Issues. Mol. Biol. 46 (10), 11503–11518 (2024).

    Google Scholar 

  • Kadhum, L. H. Geometry optimization of coupling allin-metformin using dft/b3lyp molecular modelling technique: geometry optimization of coupling allin-metformin using dft/b3lyp molecular modelling technique. Iraqi J. Market Res. Consumer Prot. 13 (2), 89–100 (2021).

    Google Scholar 

  • El Addali, A. et al. Theoretical study of the phosphate units stability by the Dft b3lyp/6-311 g quantum method. J. Chem. Technol. 31 (3), 477–485 (2023).

    Google Scholar 

  • Mackay, A. et al. Discovery of NP3-253, a potent brain penetrant inhibitor of the NLRP3 inflammasome. J. Med. Chem. 67 (23), 20780–20798 (2024).

    Google Scholar 

  • Bağlan, M., Gören, K. & Yıldıko, Ü. MEP analysis and molecular Docking using DFT calculations in DFPA molecule. Int. J. Chem. Technol. 7 (1), 38–47 (2023).

    Google Scholar 

  • Taher, S. R. & Hamad, W. M. Synthesis, characterization, density functional theory (DFT) analysis, and mesomorphic study of new thiazole derivatives. Bull. Chem. Soc. Ethiop. 38 (6), 1827–1842 (2024).

    Google Scholar 

  • Stuart, J. G. & Jebaraj, J. W. Synthesis, characterisation, in Silico molecular Docking and DFT studies of 2, 6-bis (4-hydroxy-3-methoxyphenyl)-3, 5-dimethylpiperidin-4-one. Indian J. Chem. (IJC). 62 (10), 1061–1080 (2023).

    Google Scholar 

  • Andonova, V. et al. Spectral characteristics, in Silico perspectives, density functional theory (DFT), and therapeutic potential of green-extracted phycocyanin from spirulina. Int. J. Mol. Sci. 25 (17), 9170 (2024).

    Google Scholar 

  • Wu, S. et al. Theoretical study on the adsorption of Sulforaphane on B 12 N 12-related nanocages based on density functional theory. New J. Chem. 47 (47), 21743–21752 (2023).

    Google Scholar 

  • Khalid, M. et al. Exploration of noncovalent interactions, chemical reactivity, and nonlinear optical properties of Piperidone derivatives: a concise theoretical approach. ACS Omega. 5 (22), 13236–13249 (2020).

    Google Scholar 

  • Solgun, D. G. et al. Synthesis of axially silicon phthalocyanine substituted with bis-(3, 4-dimethoxyphenethoxy) groups, DFT and molecular Docking studies. J. Incl. Phenom. Macrocyclic Chem. 102 (11), 851–860 (2022).

    Google Scholar 

  • Ganiev, B., Mardonov, U. & Kholikova, G. Molecular structure, HOMO-LUMO, MEP-–Analysis of triazine compounds using DFT (B3LYP) calculations. Materials Today: Proceedings, (2023).

  • Pardridge, W. M. Drug transport across the blood–brain barrier. J. Cereb. Blood flow. Metabolism. 32 (11), 1959–1972 (2012).

    Google Scholar 

  • Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discovery. 6 (11), 881–890 (2007).

    Google Scholar 

  • Continue Reading