The oldest known lepidosaur and origins of lepidosaur feeding adaptations

  • Uetz, P. et al. The Reptile Database (accessed 29 January 2024); http://www.reptile-database.org.

  • Evans, S. E. & Borsuk-Białynicka, M. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontol. Pol. 65, 179–202 (2009).

    Google Scholar 

  • Jones, M. E. H. et al. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol. Biol. 13, 208 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sobral, G., Simões, T. R. & Schoch, R. R. A tiny new Middle Triassic stem-lepidosauromorph from Germany: implications for the early evolution of lepidosauromorphs and the Vellberg fauna. Sci. Rep. 10, 2273 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tałanda, M., Fernandez, V., Panciroli, E., Evans, S. E. & Benson, R. J. Synchrotron tomography of a stem lizard elucidates early squamate anatomy. Nature 611, 99–104 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Evans, S. E. in Biology of the Reptilia Vol. 20 (eds Gans C. et al.) 1–347 (Society for the Study of Amphibians and Reptiles, 2008).

  • Evans, S. E. The skull of a new eosuchian reptile from the Lower Jurassic of South Wales. Zool. J. Linn. Soc. 70, 203–264 (1980).

    Article 

    Google Scholar 

  • Whiteside, D. The head skeleton of the Rhaetian sphenodontid Diphydontosaurus avonis gen. et sp. nov. and the modernizing of a living fossil. Phil. Trans. R. Soc. B 312, 379–430 (1986).

    ADS 

    Google Scholar 

  • Nicholson, D. B., Holroyd, P. A., Benson, R. B. J. & Barrett, P. M. Climate-mediated diversification of turtles in the Cretaceous. Nat. Commun. 6, 7848 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cleary, T. J., Benson, R. B. J., Evans, S. E. & Barrett, P. M. Lepidosaurian diversity in the Mesozoic–Palaeogene: the potential roles of sampling biases and environmental drivers. R. Soc. Open Sci. 5, 171830 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ford, D. P., Evans, S. E., Choiniere, J. N., Fernandez, V. & Benson, R. B. J. A reassessment of the enigmatic diapsid Paliguana whitei and the early history of Lepidosauromorpha. Proc. R. Soc. B 288, 43 (2021).

    Article 

    Google Scholar 

  • Sues, H. D. & Schoch, R. R. The oldest known rhynchocephalian reptile from the Middle Triassic (Ladinian) of Germany and its phylogenetic position among Lepidosauromorpha. Anat. Rec. 307, 776–790 (2024).

    Article 

    Google Scholar 

  • Whiteside, D. I., Chambi-Trowell, S. A. V. & Benton, M. J. A Triassic crown squamate. Sci. Adv. 8, eabq8274 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whiteside, D. I., Chambi-Trowell, S. A. V. & Benton, M. J. Late Triassic †Cryptovaranoides microlanius is a squamate, not an archosauromorph. R. Soc. Open Sci. 11, 231874 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coram, R. A., Radley, J. D. & Benton, M. J. The Middle Triassic (Anisian) Otter Sandstone biota (Devon, UK): review, recent discoveries and ways ahead. Proc. Geol. Ass. 130, 294–306 (2019).

    Article 

    Google Scholar 

  • Jones, M. E. H. Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria). J. Morphol. 269, 945–966 (2008).

    Article 
    PubMed 

    Google Scholar 

  • De Queiroz, K., Cantino, P. & Gauthier, J. 2020. Phylonyms: A Companion to the PhyloCode (CRC Press, 2020).

  • Romer, A. S. Osteology of the Reptiles (Univ. Chicago Press, 1956).

  • De Mar, D. G. Jr, Jones, M. E. H. & Carrano, M. T. A nearly complete skeleton of a new eusphenodontian from the Upper Jurassic Morrison Formation, Wyoming, USA, provides insight into the evolution and diversity of Rhynchocephalia (Reptilia: Lepidosauria). J. Syst. Palaeontol. 20, 1–64 (2022).

    Article 

    Google Scholar 

  • Fraser, N. C. A new rhynchocephalian from the British Upper Triassic. Palaeontology 25, 709–725 (1982).

    Google Scholar 

  • Chambi-Trowell, S. A. V., Whiteside, D. I. & Benton, M. J. Diversity in rhynchocephalian Clevosaurus skulls based on CT reconstruction of two Late Triassic species from Great Britain. Acta Palaeontol. Pol. 64, 41–64 (2019).

    Article 

    Google Scholar 

  • Robinson, P. L. A problematic reptile from the British Upper Trias. J. Geol. Soc. 129, 457–479 (1973).

    Article 
    ADS 

    Google Scholar 

  • Evans, S. E. & Jones, M. E. H. in New Aspects of Mesozoic Biodiversity (ed. Bandyopahyay, S.) 27–44 (Springer, 2010).

  • Fraser, N. C. The osteology and relationships of Clevosaurus (Reptilia: Sphenodontida). Phil. Trans. R. Soc. B 321, 125–178 (1988).

    ADS 

    Google Scholar 

  • Apesteguia, S. & Novas, F. E. Large Cretaceous sphenodontian from Patagonia provides insight into lepidosaur evolution in Gondwana. Nature 425, 609–612 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chambi-Trowell, S. A. V., Whiteside, D. I., Benton, M. J. & Rayfield, E. J. Biomechanical properties of the jaws of two species of Clevosaurus and a reanalysis of rhynchocephalian dentary morphospace. Palaeontology 63, 919–939 (2020).

    Article 

    Google Scholar 

  • Jones, M. E. H., Curtis, N., O’Higgins, P., Fagan, M. & Evans, S. E. The head and neck muscles associated with feeding in Sphenodon (Reptilia: Lepidosauria: Rhynchocephalia). Palaeontol. Electron. 12, 12.2.7A (2009).

    Google Scholar 

  • Whiteside, D. I., Duffin, C. J. & Furrer, H. The Late Triassic lepidosaur fauna from Hallau, North-Eastern and a new “basal” rhynchocephalian Deltadectes elvetica gen et. sp. nov. Neues Jahrb Geol. Paläontol. 285, 53–74 (2017).

    Article 

    Google Scholar 

  • Chambi-Trowell, S. A. V. et al. The diversity of Triassic South American sphenodontians: a new basal form, clevosaurs, and a revision of rhynchocephalian phylogeny. J. Syst. Palaeontol. 19, 787–820 (2021).

    Article 

    Google Scholar 

  • Hsiou, A. S. et al. A new clevosaurid from the Triassic (Carnian) of Brazil and the rise of sphenodontians in Gondwana. Sci. Rep. 9, 11821 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simões, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557, 706–709 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Martínez, R. N., Simões, T. R., Sobral, G. & Apesteguia, S. A. Triassic stem lepidosaur illuminates the origin of lizard-like reptiles. Nature 597, 235–238 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Griffiths, E. F., Ford, D. P., Benson, R. B. J. & Evans, S. E. New information on the Jurassic lepidosauromorph Marmoretta oxoniensis. Pap. Palaeontol. 7, 2255–2278 (2021).

    Article 

    Google Scholar 

  • Schoch, R. R. & Sues, H. D. A new lepidosauromorph reptile from the Middle Triassic (Ladinian) of Germany and its phylogenetic relationships. J. Vertebr. Paleontol. 38, e1444619 (2018).

    Article 

    Google Scholar 

  • Freisem, L. S., Müller, J., Suesd, H.-D. & Sobral, G. A new sphenodontian (Diapsida: Lepidosauria) from the Upper Triassic (Norian) of Germany and its implications for the mode of sphenodontian evolution. BMC Ecol. Evol. 24, 35 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benton, M. J. & Donoghu, P. C. J. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26–53 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Benton, M. J. Constraints on the timescale of animal evolutionary history. Palaeontol. Electron. 18.1.1FC, 1–106 (2015).

    ADS 

    Google Scholar 

  • Ksepka, D. T. et al. The fossil calibration database—a new resource for divergence dating. Syst. Biol. 64, 853–859 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Simões, T. R. & Pyron, R. A. The squamate tree of life. Bull. Mus. Comp. Zool. 163, 47–95 (2021).

    Article 

    Google Scholar 

  • Simões, T. R., Kammerer, C. F., Caldwell, M. W. & Pierce, S. E. Successive climate crises in the deep past drove the early evolution and radiation of reptiles. Sci. Adv. 8, eabq1898 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benton, M. J. & Wu, F. Triassic revolution. Front. Earth Sci. 10, 899541 (2022).

    Article 
    ADS 

    Google Scholar 

  • O’Brien, A., Whiteside, D. I. & Marshall, J. E. A. Anatomical study of two previously undescribed specimens of Clevosaurus hudsoni (Lepidosauria: Rhynchocephalia) from Cromhall Quarry, UK, aided by computed tomography, yields additional information on the skeleton and hitherto undescribed bones. Zool. J. Linn. Soc. 183, 163–195 (2018).

    Article 

    Google Scholar 

  • Jones, M. E. H., Curtis, N., O’Higgins, P., Fagan, M. J. & Evans, S. E. Hard tissue anatomy of the cranial joints in Sphenodon (Rhynchocephalia): sutures, kinesis and skull mechanics. Palaeontol. Electron. 14, 17A (2011).

    Google Scholar 

  • Mahler, D. L. & Kearney, M. The palatal dentition in squamate reptiles: morphology, development, attachment, and replacement. Fieldiana Zool. 108, 1–61 (2006).

    Google Scholar 

  • Matsumoto, R. & Evans, S. E. The palatal dentition of tetrapods and its functional significance. J. Anat. 230, 47–65 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Clapham, M. E. & Karr, J. A. Environmental and biotic controls on the evolutionary history of insect body size. Proc. Natl Acad. Sci. USA 109, 10927–10930 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ambrose, K., Hough, E., Smith, N. J., Warrington, G. Lithostratigraphy of the Sherwood Sandstone Group of England, Wales and south-west Scotland. Report RR/14/01 (British Geological Survey Research, 2014).

  • Hounslow, M. W. & McIntosh, G. Magnetostratigraphy of the Sherwood Sandstone Group (Lower and Middle Triassic), south Devon, UK: detailed correlation of the marine and non-marine Anisian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 325–348 (2003).

    Article 

    Google Scholar 

  • Coram, R. A., Radley, J. D. & Benton, M. J. Triassic tragedy—a bone bed in the Otter Sandstone of East Devon, south‐west England. Geol. Today 37, 176–183 (2021).

    Article 

    Google Scholar 

  • Gallois, R. The stratigraphy of the Permo-Triassic rocks of the Dorset and East Devon Coast World Heritage Site, UK. Proc. Geol. Ass. 130, 274–293 (2019).

    Article 

    Google Scholar 

  • Zaher, M., Coram, R. A. & Benton, M. J. The Middle Triassic procolophonid Kapes bentoni: computed tomography of the skull and skeleton. Pap. Palaeontol. 5, 111–138 (2019).

    Article 

    Google Scholar 

  • Cavicchini, I., Zaher, M. & Benton, M. J. An enigmatic neodiapsid reptile from the Middle Triassic of England. J. Vertebr. Paleontol. 40, e1781143 (2020).

    Article 

    Google Scholar 

  • Avizo v.2020.2. (Thermo Fisher Scientific, 2020).

  • Blender v.2.93.3 (Stichting Blender Foundation, 2018).

  • Paganin, D., Mayo, S., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Paganin, D. M. et al. Boosting spatial resolution by incorporating periodic boundary conditions into single-distance hard-X-ray phase retrieval. J. Optics 22, 115607 (2020).

    Article 
    ADS 

    Google Scholar 

  • Paleo, P., Mirone, A., Nemoz, C. and Viganò, N. R. Nabu. GitLab https://gitlab.esrf.fr/tomotools/nabu (2019).

  • Lyckegaard, A., Johnson, G. & Tafforeau, P. Correction of ring artifacts in X-ray tomographic images. Int. J. Tomo. Stat. 18, 1–9 (2011).

    Google Scholar 

  • Drakopoulos, M. T. et al. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source. J. Synchrotron Radiat. 22, 828–838 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vo, N. T., Atwood, R. C., Drakopoulos, M. & Connolley, T. Data processing methods and data acquisition for samples larger than the field of view in parallel-beam tomography. Opt. Express 29, 17849–17874 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kazanstev, D., Wadeson, N. & Basham, M. High performance Savu software for fast 3D model-based iterative reconstruction of large data at Diamond Light Source. SoftwareX 19, 101157 (2021).

    Article 

    Google Scholar 

  • Aarle, W. et al. Fast and flexible X-ray tomography using the ASTRA toolbox. Opt. Express 24, 25129–25147 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Dragonfly v.2022.2 (Comet Technologies Canada Inc., 2022).

  • Carroll, R. L. & Lindsay, W. Cranial anatomy of the primitive reptile. Procolophon. Can. J. Earth Sci. 22, 1571–1587 (1985).

    Article 
    ADS 

    Google Scholar 

  • Debraga, M. The postcranial skeleton, phylogenetic position, and probable lifestyle of the Early Triassic reptile Procolophon trigoniceps. Can. J. Earth Sci. 40, 527–556 (2003).

    Article 
    ADS 

    Google Scholar 

  • Jenkins, K. M., Bell, C. J., Hancox, P. J. & Lewis, P. J. A new species of Palacrodon and a unique form of tooth attachment in reptiles. J. Vertebr. Paleontol. 43, e2328658 (2023).

    Article 

    Google Scholar 

  • Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O. & Behlke, A. D. B. Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bull. Peabody Mus. Nat. Hist. 53, 3–308 (2012).

    Article 

    Google Scholar 

  • Burbrink, F. T. et al. Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Syst. Biol. 69, 502–520 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singhal, S. et al. Congruence and conflict in the higher-level phylogenetics of squamate reptiles: an expanded phylogenomic perspective. Syst. Biol. 70, 542–557 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goloboff, P. A. & Morales, M. E. TNT version 1.6, with a graphical interface for MacOS and Linux, including new routines in parallel. Cladistics 39, 144–153 (2023).

    Article 
    PubMed 

    Google Scholar 

  • The R Development Core Team. R: A Language and Environment for Statistical Computing v.3.6.9 (R Foundation for Statistical Computing, 2021).

  • Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Swofford, D. L. PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods) version 4. PhyloSolutions http://paup.csit.fsu.edu/ (2003).

  • Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bapst, D. W. paleotree: Paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

    Article 

    Google Scholar 

  • Bell, M. A. & Lloyd, G. T. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58, 379–389 (2015).

    Article 

    Google Scholar 

  • Benton, M. & Fernandez, V. Synchrotron X-ray CT raw data for the characterization of the skull of Agriodontosaurus helsbypetrae BRSUG 29950-14 (Version 1) [Dataset]. European Synchrotron Radiation Facility https://doi.org/10.15151/ESRF-DC-2158672188 (2025).

  • Benton, M. J. & Fernandez, V. Synchrotron X-ray CT processed data of the skull of Agriodontosaurus helsbypetrae BRSUG 29950-14 (Version 1) [Dataset]. European Synchrotron Radiation Facility https://doi.org/10.15151/ESRF-DC-2160804068 (2025).

  • Continue Reading