Amplifying antigen-induced cellular responses with proximity labelling

  • Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, M. & Yu, Y. Innate immune receptor clustering and its role in immune regulation. J. Cell Sci. 134, jcs249318 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Velders, M. P. et al. The impact of antigen density and antibody affinity on antibody-dependent cellular cytotoxicity: relevance for immunotherapy of carcinomas. Br. J. Cancer 78, 478–483 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Majzner, R. G. et al. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov. 10, 702–723 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe, K. et al. Target antigen density governs the efficacy of anti-CD20–CD28–CD3 ζ chimeric antigen receptor-modified effector CD8+ T cells. J. Immunol. 194, 911–920 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, Q., McAtee, C. K. & Su, X. Phase separation in immune signalling. Nat. Rev. Immunol. 22, 188–199 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Degn, S. E. & Tolar, P. Towards a unifying model for B-cell receptor triggering. Nat. Rev. Immunol. 25, 77–91 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Manz, B. N., Jackson, B. L., Petit, R. S., Dustin, M. L. & Groves, J. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. Proc. Natl Acad. Sci. USA 108, 9089–9094 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dustin, M. L. & Groves, J. T. Receptor signaling clusters in the immune synapse. Annu. Rev. Biophys. 41, 543–556 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albelda, S. M. Tumor antigen heterogeneity: the “elephant in the room” of adoptive T-cell therapy for solid tumors. Cancer Immunol. Res. 8, 2 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, L. et al. Vaccine-boosted CAR T crosstalk with host immunity to reject tumors with antigen heterogeneity. Cell 186, 3148–3165 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nijhof, I. S. et al. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab. Leukemia 29, 2039–2049 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heitzeneder, S. et al. GPC2–CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell 40, 53–69 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chew, H. Y. et al. Endocytosis inhibition in humans to improve responses to ADCC-mediating antibodies. Cell 180, 895–914 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, A. Q. et al. Universal redirection of CAR T cells against solid tumours via membrane-inserted ligands for the CAR. Nat. Biomed. Eng. 7, 1113–1128 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, A. K. et al. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci. Transl. Med. 12, eaaz1863 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, S., Li, J. & Ting, A. Y. Proximity labeling: spatially resolved proteomic mapping for neurobiology. Curr. Opin. Neurobiol. 50, 17–23 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. Cell 180, 373–386 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018)

    Article 

    Google Scholar 

  • Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, P. et al. Mapping spatial transcriptome with light-activated proximity-dependent RNA labeling. Nat. Chem. Biol. 15, 1110–1119 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, Z. et al. Multiscale photocatalytic proximity labeling reveals cell surface neighbors on and between cells. Science 385, eadl5763 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tay, N. E. S. et al. Targeted activation in localized protein environments via deep red photoredox catalysis. Nat. Chem. 15, 101–109 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, H. et al. Tyrosinase-based proximity labeling in living cells and in vivo. J. Am. Chem. Soc. 146, 7515–7523 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Buksh, B. F. et al. muMap-Red: proximity labeling by red light photocatalysis. J. Am. Chem. Soc. 144, 6154–6162 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chao, Y. & Liu, Z. Biomaterials tools to modulate the tumour microenvironment in immunotherapy. Nat. Rev. Bioeng. 1, 125–138 (2023).

    Article 
    CAS 

    Google Scholar 

  • Lee, D., Huntoon, K., Lux, J., Kim, B. Y. S. & Jiang, W. Engineering nanomaterial physical characteristics for cancer immunotherapy. Nat. Rev. Bioeng. 1, 499–517 (2023).

    Article 
    CAS 

    Google Scholar 

  • Chen, J., Zhu, Y. & Kaskel, S. Porphyrin-based metal–organic frameworks for biomedical applications. Angew. Chem. Int. Ed. Engl. 60, 5010–5035 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, J. et al. Porphyrinic metal–organic framework PCN-224 nanoparticles for near-infrared-induced attenuation of aggregation and neurotoxicity of Alzheimer’s amyloid-β peptide. ACS Appl. Mater. Interfaces 10, 36615–36621 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giuntini, F. et al. Insight into ultrasound-mediated reactive oxygen species generation by various metal–porphyrin complexes. Free Radic. Biol. Med. 121, 190–201 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hananya, N., Ye, X., Koren, S. & Muir, T. W. A genetically encoded photoproximity labeling approach for mapping protein territories. Proc. Natl Acad. Sci. USA 120, e2219339120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scaranti, M., Cojocaru, E., Banerjee, S. & Banerji, U. Exploiting the folate receptor α in oncology. Nat. Rev. Clin. Oncol. 17, 349–359 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Morath, I. et al. Differential recruitment of CD44 isoforms by ErbB ligands reveals an involvement of CD44 in breast cancer. Oncogene 37, 1472–1484 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heider, K. H., Kuthan, H., Stehle, G. & Munzert, G. CD44v6: a target for antibody-based cancer therapy. Cancer Immunol. Immunother. 53, 567–579 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alford, R. et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol. Imaging 8, 341–354 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Erkes, D. A. & Selvan, S. R. Hapten-induced contact hypersensitivity, autoimmune reactions, and tumor regression: plausibility of mediating antitumor immunity. J. Immunol. Res. 2014, 175265 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shokat, K. M. & Schultz, P. G. Redirecting the immune response: ligand-mediated immunogenicity. J. Am. Chem. Soc. 113, 1861–1862 (2002).

    Article 

    Google Scholar 

  • Lu, Y. & Low, P. S. Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol. Immunother. 51, 153–162 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lillemeier, B. F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vaughan, T. J. et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liao, K. W., Lo, Y. C. & Roffler, S. R. Activation of lymphocytes by anti-CD3 single-chain antibody dimers expressed on the plasma membrane of tumor cells. Gene Ther. 7, 339–347 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pfistershammer, K. et al. No evidence for dualism in function and receptors: PD-L2/B7-DC is an inhibitory regulator of human T cell activation. Eur. J. Immunol. 36, 1104–1113 (2006).

  • Chakraborty, A. K. & Weiss, A. Insights into the initiation of TCR signaling. Nat. Immunol. 15, 798–807 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Polak, R., Zhang, E. T. & Kuo, C. J. Cancer organoids 2.0: modelling the complexity of the tumour immune microenvironment. Nat. Rev. Cancer 24, 523–539 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Voabil, P. et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat. Med. 27, 1250–1261 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Belmontes, B. et al. Immunotherapy combinations overcome resistance to bispecific T cell engager treatment in T cell-cold solid tumors. Sci. Transl. Med. 13, eabd1524 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Godbersen-Palmer, C., Coupet, T. A., Grada, Z., Zhang, S. C. & Sentman, C. L. Toxicity induced by a bispecific T cell-redirecting protein is mediated by both T cells and myeloid cells in immunocompetent mice. J Immunol 204, 2973–2983 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oslund, R. C. et al. Detection of cell–cell interactions via photocatalytic cell tagging. Nat. Chem. Biol. 18, 850–858 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pasqual, G. et al. Monitoring T cell–dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 553, 496–500 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z. et al. Detecting tumor antigen-specific T cells via interaction-dependent fucosyl-biotinylation. Cell 183, 1117–1133 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seath, C. P. et al. Tracking chromatin state changes using nanoscale photo-proximity labelling. Nature 616, 574–580 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peri, A. et al. The landscape of T cell antigens for cancer immunotherapy. Nat. Cancer 4, 937–954 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garcia-Guerrero, E. et al. Upregulation of CD38 expression on multiple myeloma cells by novel HDAC6 inhibitors is a class effect and augments the efficacy of daratumumab. Leukemia 35, 201–214 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, M. S. et al. Redirection of genetically engineered CAR-T cells using bifunctional small molecules. J. Am. Chem. Soc. 137, 2832–2835 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, Y. G. et al. Use of a single CAR T cell and several bispecific adapters facilitates eradication of multiple antigenically different solid tumors. Cancer Res. 79, 387–396 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riechelmann, H. et al. Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol. 44, 823–829 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Castellarin, M. et al. A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight 5, 175265 (2020).

    Article 

    Google Scholar 

  • Feng, D. et al. Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105–17110 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. et al. Formulation of metal–organic framework-based drug carriers by controlled coordination of methoxy PEG phosphate: boosting colloidal stability and redispersibility. J. Am. Chem. Soc. 143, 13557–13572 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duan, H. et al. CD146 bound to LCK promotes T cell receptor signaling and antitumor immune responses in mice. J. Clin. Invest. https://doi.org/10.1172/JCI148568 (2021).

  • Su, S. et al. Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell 175, 442–457 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. PATCH v.1. Zenodo https://doi.org/10.5281/zenodo.16674296 (2025).

  • Continue Reading