Wan, H., Xu, J. & Wang, C. Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2024).
Google Scholar
Xu, K. Interfaces and interphases in batteries. J. Power Sources 559, 232652 (2023).
Google Scholar
Popovic, J. The importance of electrode interfaces and interphases for rechargeable metal batteries. Nat. Commun. 12, 6240 (2021).
Google Scholar
Wang, C., Meng, Y. S. & Xu, K. Perspective—fluorinating interphases. J. Electrochem. Soc. 166, A5184–A5186 (2018).
Google Scholar
Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).
Google Scholar
Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).
Google Scholar
Li, T., Zhang, X.-Q., Shi, P. & Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019).
Google Scholar
Peled, E. & Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).
Google Scholar
Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).
Google Scholar
Shen, X. et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10, 1903645 (2020).
Google Scholar
Xie, J. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 3, eaao3170 (2017).
Google Scholar
Lin, D. et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 17, 3731–3737 (2017).
Google Scholar
Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).
Google Scholar
Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).
Google Scholar
Oyakhire, S. T., Gong, H., Cui, Y., Bao, Z. & Bent, S. F. An X-ray photoelectron spectroscopy primer for solid electrolyte interphase characterization in lithium metal anodes. ACS Energy Lett. 7, 2540–2546 (2022).
Google Scholar
Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).
Google Scholar
Ma, C., Xu, F. & Song, T. Dual-layered interfacial evolution of lithium metal anode: SEI analysis via TOF-SIMS technology. ACS Appl. Mater. Interfaces 14, 20197–20207 (2022).
Google Scholar
Hope, M. A. et al. Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal. Nat. Commun. 11, 2224 (2020).
Google Scholar
May, R., Fritzsching, K. J., Livitz, D., Denny, S. R. & Marbella, L. E. Rapid interfacial exchange of Li ions dictates high Coulombic efficiency in Li metal anodes. ACS Energy Lett. 6, 1162–1169 (2021).
Google Scholar
Menkin, S. et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 30, 16719–16732 (2021).
Google Scholar
Shadike, Z. et al. Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 16, 549–554 (2021).
Google Scholar
Yildirim, H., Kinaci, A., Chan, M. K. Y. & Greeley, J. P. First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF. ACS Appl. Mater. Interfaces 7, 18985–18996 (2015).
Google Scholar
Chen, Y. et al. Origin of dendrite-free lithium deposition in concentrated electrolytes. Nat. Commun. 14, 2655 (2023).
Google Scholar
Qian, J. F. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
Google Scholar
May, R., Hestenes, J. C., Munich, N. A. & Marbella, L. E. Fluorinated ether decomposition in localized high concentration electrolytes. J. Power Sources 553, 232299 (2023).
Google Scholar
Svirinovsky-Arbeli, A., Juelsholt, M., May, R., Kwon, Y. & Marbella, L. E. Using NMR spectroscopy to link structure to function at the Li solid electrolyte interphase. Joule 8, 1919–1935 (2024).
Google Scholar
Hu, J. Z., Kwak, J. H., Yang, Z., Wan, X. & Shaw, L. L. Detailed investigation of ion exchange in ball-milled LiH+MgB2 system using ultra-high field nuclear magnetic resonance spectroscopy. J. Power Sources 195, 3645–3648 (2010).
Google Scholar
Zhong, G. et al. Insights into the lithiation mechanism of CFx by a joint high-resolution 19F NMR, in situ TEM and 7Li NMR approach. J. Mater. Chem. A 7, 19793–19799 (2019).
Google Scholar
Gombotz, M. et al. Insulator:conductor interfacial regions — Li ion dynamics in the nanocrystalline dispersed ionic conductor LiF:TiO2. Solid State Ion. 369, 115726 (2021).
Google Scholar
Saldan, I. et al. Hydrogen sorption in the LiH–LiF–MgB2 system. J. Phys. Chem. C 117, 17360–17366 (2013).
Google Scholar
Pinatel, E. R., Corno, M., Ugliengo, P. & Baricco, M. Effects of metastability on hydrogen sorption in fluorine substituted hydrides. J. Alloys Compd. 615, S706–S710 (2014).
Google Scholar
Pighin, S. A., Urretavizcaya, G. & Castro, F. J. Reversible hydrogen storage in Mg(HxF1−x)2 solid solutions. J. Alloys Compd. 708, 108–114 (2017).
Google Scholar
Pistidda, C. et al. Effect of the partial replacement of CaH2 with CaF2 in the mixed system CaH2 + MgB2. J. Phys. Chem. C 118, 28409–28417 (2014).
Google Scholar
Sitthiwet, C. et al. Hydrogen sorption kinetics and suppression of NH3 emission of LiH-sandwiched LiNH2-LiH-TiF4-MWCNTs pellets upon cycling. J. Alloys Compd. 909, 164673 (2022).
Google Scholar
Yu, W., Yu, Z., Cui, Y. & Bao, Z. Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7, 3270–3275 (2022).
Google Scholar
Breuer, O., Gofer, Y., Elias, Y., Fayena-Greenstein, M. & Aurbach, D. Misuse of XPS in analyzing solid polymer electrolytes for lithium batteries. J. Electrochem. Soc. 171, 030510 (2024).
Google Scholar
Steinberg, K. et al. Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nat. Energy 8, 138–148 (2023).
Google Scholar
Ilott, A. J. & Jerschow, A. Probing solid-electrolyte interphase (SEI) growth and ion permeability at undriven electrolyte–metal interfaces using 7Li NMR. J. Phys. Chem. C 122, 12598–12604 (2018).
Google Scholar
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Google Scholar
Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
Google Scholar
Henkelman, G. et al. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
Google Scholar
Wang, V. et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).
Google Scholar
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Google Scholar
Brivio, F. et al. Thermodynamic origin of photoinstability in the CH3NH3Pb(I1−xBrx)3 hybrid halide perovskite alloy. J. Phys. Chem. Lett. 7, 1083–1087 (2016).
Google Scholar