Probing the heterogeneous nature of LiF in solid–electrolyte interphases

  • Wan, H., Xu, J. & Wang, C. Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, K. Interfaces and interphases in batteries. J. Power Sources 559, 232652 (2023).

    Article 
    CAS 

    Google Scholar 

  • Popovic, J. The importance of electrode interfaces and interphases for rechargeable metal batteries. Nat. Commun. 12, 6240 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C., Meng, Y. S. & Xu, K. Perspective—fluorinating interphases. J. Electrochem. Soc. 166, A5184–A5186 (2018).

    Article 

    Google Scholar 

  • Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, T., Zhang, X.-Q., Shi, P. & Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019).

    Article 
    CAS 

    Google Scholar 

  • Peled, E. & Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, X. et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10, 1903645 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xie, J. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 3, eaao3170 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, D. et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 17, 3731–3737 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Oyakhire, S. T., Gong, H., Cui, Y., Bao, Z. & Bent, S. F. An X-ray photoelectron spectroscopy primer for solid electrolyte interphase characterization in lithium metal anodes. ACS Energy Lett. 7, 2540–2546 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, C., Xu, F. & Song, T. Dual-layered interfacial evolution of lithium metal anode: SEI analysis via TOF-SIMS technology. ACS Appl. Mater. Interfaces 14, 20197–20207 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hope, M. A. et al. Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal. Nat. Commun. 11, 2224 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • May, R., Fritzsching, K. J., Livitz, D., Denny, S. R. & Marbella, L. E. Rapid interfacial exchange of Li ions dictates high Coulombic efficiency in Li metal anodes. ACS Energy Lett. 6, 1162–1169 (2021).

    Article 
    CAS 

    Google Scholar 

  • Menkin, S. et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 30, 16719–16732 (2021).

    Article 

    Google Scholar 

  • Shadike, Z. et al. Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 16, 549–554 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yildirim, H., Kinaci, A., Chan, M. K. Y. & Greeley, J. P. First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF. ACS Appl. Mater. Interfaces 7, 18985–18996 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y. et al. Origin of dendrite-free lithium deposition in concentrated electrolytes. Nat. Commun. 14, 2655 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qian, J. F. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • May, R., Hestenes, J. C., Munich, N. A. & Marbella, L. E. Fluorinated ether decomposition in localized high concentration electrolytes. J. Power Sources 553, 232299 (2023).

    Article 
    CAS 

    Google Scholar 

  • Svirinovsky-Arbeli, A., Juelsholt, M., May, R., Kwon, Y. & Marbella, L. E. Using NMR spectroscopy to link structure to function at the Li solid electrolyte interphase. Joule 8, 1919–1935 (2024).

    Article 
    CAS 

    Google Scholar 

  • Hu, J. Z., Kwak, J. H., Yang, Z., Wan, X. & Shaw, L. L. Detailed investigation of ion exchange in ball-milled LiH+MgB2 system using ultra-high field nuclear magnetic resonance spectroscopy. J. Power Sources 195, 3645–3648 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhong, G. et al. Insights into the lithiation mechanism of CFx by a joint high-resolution 19F NMR, in situ TEM and 7Li NMR approach. J. Mater. Chem. A 7, 19793–19799 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gombotz, M. et al. Insulator:conductor interfacial regions — Li ion dynamics in the nanocrystalline dispersed ionic conductor LiF:TiO2. Solid State Ion. 369, 115726 (2021).

    Article 
    CAS 

    Google Scholar 

  • Saldan, I. et al. Hydrogen sorption in the LiH–LiF–MgB2 system. J. Phys. Chem. C 117, 17360–17366 (2013).

    Article 
    CAS 

    Google Scholar 

  • Pinatel, E. R., Corno, M., Ugliengo, P. & Baricco, M. Effects of metastability on hydrogen sorption in fluorine substituted hydrides. J. Alloys Compd. 615, S706–S710 (2014).

    Article 
    CAS 

    Google Scholar 

  • Pighin, S. A., Urretavizcaya, G. & Castro, F. J. Reversible hydrogen storage in Mg(HxF1−x)2 solid solutions. J. Alloys Compd. 708, 108–114 (2017).

    Article 
    CAS 

    Google Scholar 

  • Pistidda, C. et al. Effect of the partial replacement of CaH2 with CaF2 in the mixed system CaH2 + MgB2. J. Phys. Chem. C 118, 28409–28417 (2014).

    Article 
    CAS 

    Google Scholar 

  • Sitthiwet, C. et al. Hydrogen sorption kinetics and suppression of NH3 emission of LiH-sandwiched LiNH2-LiH-TiF4-MWCNTs pellets upon cycling. J. Alloys Compd. 909, 164673 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yu, W., Yu, Z., Cui, Y. & Bao, Z. Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7, 3270–3275 (2022).

    Article 
    CAS 

    Google Scholar 

  • Breuer, O., Gofer, Y., Elias, Y., Fayena-Greenstein, M. & Aurbach, D. Misuse of XPS in analyzing solid polymer electrolytes for lithium batteries. J. Electrochem. Soc. 171, 030510 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Steinberg, K. et al. Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nat. Energy 8, 138–148 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ilott, A. J. & Jerschow, A. Probing solid-electrolyte interphase (SEI) growth and ion permeability at undriven electrolyte–metal interfaces using 7Li NMR. J. Phys. Chem. C 122, 12598–12604 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar 

  • Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Henkelman, G. et al. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, V. et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article 
    CAS 

    Google Scholar 

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brivio, F. et al. Thermodynamic origin of photoinstability in the CH3NH3Pb(I1−xBrx)3 hybrid halide perovskite alloy. J. Phys. Chem. Lett. 7, 1083–1087 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading