Building material stock drives embodied carbon emissions and risks future climate goals in China

  • Yang, X. J. China’s rapid urbanization. Science 342, 310–310 (2013).

    Article 
    CAS 

    Google Scholar 

  • Chen, M. & Graedel, T. E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Change 36, 139–152 (2016).

    Article 

    Google Scholar 

  • Zhong, X., Deetman, S., Tukker, A. & Behrens, P. Increasing material efficiencies of buildings to address the global sand crisis. Nat. Sustain. 5, 389–392 (2022).

    Article 

    Google Scholar 

  • Liu, G., Bangs, C. E. & Müller, D. B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Change 3, 338–342 (2013).

    Article 
    CAS 

    Google Scholar 

  • Müller, D. B. et al. Carbon emissions of infrastructure development. Environ. Sci. Technol. 47, 11739–11746 (2013).

    Article 

    Google Scholar 

  • Krausmann, F., Wiedenhofer, D. & Haberl, H. Growing stocks of buildings, infrastructures and machinery as key challenge for compliance with climate targets. Glob. Environ. Change 61, 102034 (2020).

    Article 

    Google Scholar 

  • Building Materials and the Climate: Constructing a New Future (United Nations Environment Programme, 2023).

  • Pandey, B., Brelsford, C. & Seto, K. C. Rising infrastructure inequalities accompany urbanization and economic development. Nat. Commun. 16, 1193 (2025).

    Article 
    CAS 

    Google Scholar 

  • Pandey, B., Brelsford, C. & Seto, K. C. Infrastructure inequality is a characteristic of urbanization. Proc. Natl Acad. Sci. USA 119, e2119890119 (2022).

    Article 
    CAS 

    Google Scholar 

  • Song, L. et al. China’s bulk material loops can be closed but deep decarbonization requires demand reduction. Nat. Clim. Change 13, 1136–1143 (2023).

    Article 

    Google Scholar 

  • Röck, M. et al. Embodied GHG emissions of buildings—the hidden challenge for effective climate change mitigation. Appl. Energy 258, 114107 (2020).

    Article 

    Google Scholar 

  • De Coninck, H. et al. in Global Warming of 1.5 °C: Summary for Policy Makers 313-443 (IPCC, 2018).

  • Watari, T., Cabrera Serrenho, A., Gast, L., Cullen, J. & Allwood, J. Feasible supply of steel and cement within a carbon budget is likely to fall short of expected global demand. Nat. Commun. 14, 7895 (2023).

    Article 
    CAS 

    Google Scholar 

  • Xia, X. et al. The carbon budget of China: 1980–2021. Sci. Bull. 69, 114–124 (2024).

    Article 

    Google Scholar 

  • Lu, H. et al. Reducing China’s building material embodied emissions: opportunities and challenges to achieve carbon neutrality in building materials. iScience https://doi.org/10.1016/j.isci.2024.109028 (2024).

  • Frantz, D. et al. Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nat. Commun. 14, 8014 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wiedenhofer, D. et al. Mapping material stocks of buildings and mobility infrastructure in the United Kingdom and the Republic of Ireland. Resour. Conserv. Recycl. 206, 107630 (2024).

    Article 

    Google Scholar 

  • Haberl, H. et al. High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environ. Sci. Technol. 55, 3368–3379 (2021).

    Article 
    CAS 

    Google Scholar 

  • Haberl, H. et al. Weighing the global built environment: high-resolution mapping and quantification of material stocks in buildings. J. Ind. Ecol. 29, 159–172 (2024).

    Article 

    Google Scholar 

  • Bao, Y. et al. High-resolution mapping of material stocks in the built environment across 50 Chinese cities. Resour. Conserv. Recycl. 199, 107232 (2023).

    Article 

    Google Scholar 

  • Sun, J., Wang, T., Jiang, N., Liu, Z. & Gao, X. Gridded material stocks in China based on geographical and geometric configurations of the built-environment. Sci. Data 10, 915 (2023).

    Article 

    Google Scholar 

  • Cai, B. et al. Mapping material stocks in buildings and infrastructures across the Beijing–Tianjin–Hebei urban agglomeration at high-resolution using multi-source geographical data. Resour. Conserv. Recycl. 205, 107561 (2024).

    Article 

    Google Scholar 

  • Elhacham, E., Ben-Uri, L., Grozovski, J., Bar-On, Y. M. & Milo, R. Global human-made mass exceeds all living biomass. Nature 588, 442–444 (2020).

    Article 
    CAS 

    Google Scholar 

  • Deng, Y., Qi, W., Fu, B. & Wang, K. Geographical transformations of urban sprawl: exploring the spatial heterogeneity across cities in China 1992–2015. Cities 105, 102415 (2020).

    Article 

    Google Scholar 

  • Wang, J., Lin, Y., Glendinning, A. & Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 75, 375–387 (2018).

    Article 

    Google Scholar 

  • Cai, Z., Liu, Q. & Cao, S. Real estate supports rapid development of China’s urbanization. Land Use Policy 95, 104582 (2020).

    Article 

    Google Scholar 

  • Zhao, S. et al. Spatial and temporal dimensions of urban expansion in China. Environ. Sci. Technol. 49, 9600–9609 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lin, W. et al. Regional differences of urbanization in China and its driving factors. Sci. China Earth Sci. 61, 778–791 (2018).

    Article 

    Google Scholar 

  • Guo, J., Yu, Z., Ma, Z., Xu, D. & Cao, S. What factors have driven urbanization in China. Environ., Dev. Sustain. 24, 6508–6526 (2022).

    Article 

    Google Scholar 

  • Zhang, C., Zhou, B. & Wang, Q. Effect of China’s western development strategy on carbon intensity. J. Clean. Prod. 215, 1170–1179 (2019).

    Article 

    Google Scholar 

  • Pauliuk, S., Carrer, F., Heeren, N. & Hertwich, E. G. Scenario analysis of supply- and demand-side solutions for circular economy and climate change mitigation in the global building sector. J. Ind. Ecol. 28, 1699–1715 (2024).

    Article 

    Google Scholar 

  • Tanikawa, H. et al. A framework of indicators for associating material stocks and flows to service provisioning: application for Japan 1990–2015. J. Clean. Prod. 285, 125450 (2021).

    Article 

    Google Scholar 

  • Lanau, M. et al. Taking stock of built environment stock studies: progress and prospects. Environ. Sci. Technol. 53, 8499–8515 (2019).

    Article 
    CAS 

    Google Scholar 

  • Streeck, J., Dammerer, Q., Wiedenhofer, D. & Krausmann, F. The role of socio-economic material stocks for natural resource use in the United States of America from 1870 to 2100. J. Ind. Ecol. 25, 1486–1502 (2021).

    Article 

    Google Scholar 

  • Xie, J., Wei, N. & Gao, Q. Assessing spatiotemporal population density dynamics from 2000 to 2020 in megacities using urban and rural morphologies. Sci. Rep. 14, 14166 (2024).

    Article 
    CAS 

    Google Scholar 

  • Zhang, P. et al. Remote sensing modeling of urban density dynamics across 36 major cities in China: fresh insights from hierarchical urbanized space. Landsc. Urban Plan. 203, 103896 (2020).

    Article 

    Google Scholar 

  • Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 5, 157–166 (2022).

    Article 

    Google Scholar 

  • Hu, M. et al. Iron and steel in Chinese residential buildings: a dynamic analysis. Resour. Conserv. Recycl. 54, 591–600 (2010).

    Article 

    Google Scholar 

  • Zhong, X. et al. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nat. Commun. 12, 6126 (2021).

    Article 
    CAS 

    Google Scholar 

  • Huang, T., Shi, F., Tanikawa, H., Fei, J. & Han, J. Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis. Resour. Conserv. Recycl. 72, 91–101 (2013).

    Article 

    Google Scholar 

  • Fernando, Y. & Hor, W. L. Impacts of energy management practices on energy efficiency and carbon emissions reduction: a survey of Malaysian manufacturing firms. Resour. Conserv. Recycl. 126, 62–73 (2017).

    Article 

    Google Scholar 

  • Pan, W. & Pan, M. Opportunities and risks of implementing zero-carbon building policy for cities: Hong Kong case. Appl. Energy 256, 113835 (2019).

    Article 

    Google Scholar 

  • Hossain, M. U., Poon, C. S., Dong, Y. H. & Xuan, D. Evaluation of environmental impact distribution methods for supplementary cementitious materials. Renew. Sustain. Energy Rev. 82, 597–608 (2018).

    Article 
    CAS 

    Google Scholar 

  • Singh, A. P. Assessment of India’s Green Hydrogen Mission and environmental impact. Renew. Sustain. Energy Rev. 203, 114758 (2024).

    Article 
    CAS 

    Google Scholar 

  • Fan, J.-L. et al. A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage. Nat. Commun. 14, 5972 (2023).

    Article 
    CAS 

    Google Scholar 

  • Chen, S., Liu, J., Zhang, Q., Teng, F. & McLellan, B. C. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew. Sustain. Energy Rev. 167, 112537 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, N. et al. Optimal CCUS supply chain toward carbon neutrality: novel framework for thermal power, iron-steel, and cement sectors. Ind. Eng. Chem. Res. 63, 4460–4477 (2024).

    Article 
    CAS 

    Google Scholar 

  • Che, Y. et al. 3D-GloBFP: the first global three-dimensional building footprint dataset. Earth Syst. Sci. Data 16, 5357–5374 (2024).

    Article 

    Google Scholar 

  • Zhang, Z. et al. Vectorized rooftop area data for 90 cities in China. Sci. Data 9, 66 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Z. et al. Carbon mitigation potential afforded by rooftop photovoltaic in China. Nat. Commun. 14, 2347 (2023).

    Article 
    CAS 

    Google Scholar 

  • Li, X. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 15, 094044 (2020).

    Article 

    Google Scholar 

  • Wu, W.-B. et al. A first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source Earth observations and machine learning. Remote Sens. Environ. 291, 113578 (2023).

    Article 

    Google Scholar 

  • Ma, X. et al. Mapping fine-scale building heights in urban agglomeration with spaceborne lidar. Remote Sens. Environ. 285, 113392 (2023).

    Article 

    Google Scholar 

  • Che, Y. et al. Mapping of individual building heights reveals the large gap of urban-rural living spaces in the contiguous US. Innov. Geosci. 2, 100069 (2024).

    Article 
    CAS 

    Google Scholar 

  • Herfort, B., Lautenbach, S., Porto de Albuquerque, J., Anderson, J. & Zipf, A. A spatio-temporal analysis investigating completeness and inequalities of global urban building data in OpenStreetMap. Nat. Commun. 14, 3985 (2023).

    Article 
    CAS 

    Google Scholar 

  • P, G. et al. Mapping essential urban land use categories in China (EULUC-China): preliminary. Sci. Bull. 65, 182–187 (2020).

    Article 

    Google Scholar 

  • Zhou, Z.-H. & Feng, J. Deep forest. Natl Sci. Rev. 6, 74–86 (2018).

    Article 

    Google Scholar 

  • Feng, Q. et al. Long-term gridded land evapotranspiration reconstruction using Deep Forest with high generalizability. Sci. Data 10, 908 (2023).

    Article 

    Google Scholar 

  • Kennedy, R. E. et al. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 10, 691 (2018).

    Article 

    Google Scholar 

  • Wang, Y. et al. High-resolution maps show that rubber causes substantial deforestation. Nature 623, 340–346 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ni, H., Yu, L., Gong, P., Li, X. & Zhao, J. Urban renewal mapping: a case study in Beijing from 2000 to 2020. J. Remote Sens. 3, 0072 (2023).

  • Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 236, 111510 (2020).

    Article 

    Google Scholar 

  • Tatem, A. J. WorldPop, open data for spatial demography. Sci. Data 4, 170004 (2017).

    Article 

    Google Scholar 

  • Chen, B. et al. Contrasting inequality in human exposure to greenspace between cities of Global North and Global South. Nat. Commun. 13, 4636 (2022).

    Article 
    CAS 

    Google Scholar 

  • Röck, M., Balouktsi, M. & Ruschi Mendes Saade, M. Embodied carbon emissions of buildings and how to tame them. One Earth 6, 1458–1464 (2023).

    Article 

    Google Scholar 

  • IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2023).

  • Grant, D., Hansen, T., Jorgenson, A. & Longhofer, W. A worldwide analysis of stranded fossil fuel assets’ impact on power plants’ CO2 emissions. Nat. Commun. 15, 7517 (2024).

    Article 
    CAS 

    Google Scholar 

  • Zhang, C. & Chen, Z. Building material stock drives embodied carbon emissions and risks future climate goals in China. Zenodo https://doi.org/10.5281/zenodo.17174497 (2025).

  • Continue Reading