Automated water demand forecasting for national-scale deployment: a prophet-based framework for Palestinian municipal water management

  • UN-Water. United Nations World Water Development Report 2023: Partnerships and cooperation for water (2023). https://www.unwater.org/publications/un-world-water-development-report-2023. Accessed July 2025.

  • Fang, X., Liu, J., Zhang, M., Zhang, H. & Zhao, J. Review of the mechanism and methodology of water demand forecasting in the socio-economic system. Water 16, 1631 (2024).

    Google Scholar 

  • Ristow, D. C. M., Henning, E., Kalbusch, A. & Petersen, C. E. Models for forecasting water demand using time series analysis: A case study in Southern Brazil. J. Water Sanit. Hygiene Dev. 11, 231–240. https://doi.org/10.2166/washdev.2021.208 (2021).

    Google Scholar 

  • Almanjahie, I. M., Elmezouar, Z. C., Baig, M. B. & Ahmad, I. Modeling of water consumption in Saudi Arabia using classical and modern time series methods. Arab. J.Geosci. 14, 522 (2021).

    Google Scholar 

  • Stefaniak, A. K., Jaskowiak, P. A. & Weihmann, L. A case study on water demand forecasting in a coastal tourist city. In Intelligent Systems (eds Paes, A. & Verri, F. A. N.) (Springer Nature Switzerland, Cham, 2025).

    Google Scholar 

  • Shuang, Q. & Zhao, R. T. Water demand prediction using machine learning methods: A case study of the Beijing-Tianjin-Hebei region in China. Water 13, 310 (2021).

    Google Scholar 

  • Banda, P. C., Bhuiyan, M. A. R., Zhang, K. & Song, A. Multivariate monthly water demand prediction using ensemble and gradient boosting machine learning techniques. In Proceedings of the International Conference on Evolving Cities (ICEC2021), 29–36 (2021), Southampton, UK. https://publications.evolvingcities.org/proc-icec/article/download/14/7.

  • Görenekli, K. & Gülbaug, A. Comparative analysis of machine learning techniques for water consumption prediction: A case study from Kocaeli Province. Sensors 24, 5846 (2024).

    Google Scholar 

  • Jiang, Q. et al. Forecasting regional water demand using multi-fidelity data and Harris Hawks Optimization of generalized regression neural network models – A case study of Heilongjiang Province China. J. Hydrol. 634, 131084 (2024).

    Google Scholar 

  • Shu, J. et al. Long-term water demand forecasting using artificial intelligence models in the Tuojiang River Basin, China. PLOS ONE 19 (2024). https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0302558&type=printable.

  • Liu, G., Savic, D. & Fu, G. Short-term water demand forecasting using data-centric machine learning approaches. Journal of Hydroinformatics 25, 895 – 911 (2023). https://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2023.163/1186085/jh2023163.pdf.

  • Niazkar, M. et al. Applications of XGBoost in water resources engineering: A systematic literature review Dec 2018-May 2023. Environ. Model. Softw. 174, 105971 (2024).

    Google Scholar 

  • Papacharalampous, G. & Langousis, A. Probabilistic water demand forecasting using quantile regression algorithms. Water Resources Research 58, e2021WR030216 (2022). https://doi.org/10.1029/2021WR030216.https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021WR030216.

  • Shan, S., Ni, H., Chen, G., Lin, X. & Li, J. A machine learning framework for enhancing short-term water demand forecasting using attention-BiLSTM networks integrated with XGBoost residual correction. Water 15(20), 3605 (2023).

    Google Scholar 

  • Du, B., Zhou, Q., Guo, J., Guo, S. & Wang, L. Deep learning with long short-term memory neural networks combining wavelet transform and principal component analysis for daily urban water demand forecasting. Expert Syst. Appl. 171, 114571. https://doi.org/10.1016/j.eswa.2021.114571 (2021).

    Google Scholar 

  • Wang, K., Ye, Z., Wang, Z., Liu, B. & Feng, T. MACLA-LSTM: A novel approach for forecasting water demand. Sustainability 15, 3628 (2023).

    Google Scholar 

  • Gil-Gamboa, A., Paneque, P., Trull, O. & Troncoso, A. Medium-term water consumption forecasting based on deep neural networks. Expert Syst. Appl. 247, 123234 (2024).

    Google Scholar 

  • Que, Q., Gao, J. & Qian, Y. Water demand forecasting in multiple district metered areas based on a multi-scale correction module neural network architecture. Water Res. X 25, 100269 (2024).

    Google Scholar 

  • Zanfei, A. Graph convolutional recurrent neural networks for water demand forecasting. Water Resour. Res. 58, e2022WR032299 (2022).

    Google Scholar 

  • Wang, K., Xie, X., Liu, B., Yu, J. & Wang, Z. Reliable multi-horizon water demand forecasting model: A temporal deep learning approach. Sustain. Cities Soc. 112, 105595 (2024).

    Google Scholar 

  • Xu, J. Forecasting water demand with the long short-term memory deep learning mode. Int. J. Inform. Technol. Syst. Approach 17(1), 1–18. https://doi.org/10.4018/IJITSA.338910 (2024).

    Google Scholar 

  • Liu, J., Zhou, X., Zhang, L. & Xu, Y.-P. Forecasting short-term water demands with an ensemble deep learning model for a water supply system. Water Resour. Manag. 37, 1–22. https://doi.org/10.1007/s11269-022-03409-0 (2023).

    Google Scholar 

  • Liu, C., Liu, Z., Yuan, J., Wang, D. & Liu, X. Urban water demand prediction based on attention mechanism graph convolutional network-long short-term memory. Water 16(6), 831. https://doi.org/10.3390/w16060831 (2024).

    Google Scholar 

  • Taylor, S. J. & Letham, B. Forecasting at scale. Am. Stat. 72(1), 37–45 (2018).

    Google Scholar 

  • Guo, L., Fang, W., Zhao, Q. & Wang, X. The hybrid PROPHET-SVR approach for forecasting product time series demand with seasonality. Comput. Ind. Eng. 161, 107598 (2021).

    Google Scholar 

  • Liu, H., Xing, R. & Davies, E. G. R. Forecasting municipal water demands: Evaluating the impacts of population growth, climate change, and conservation policies on water end-use. Sustain. Cities Soc. 130, 106581 (2025).

    Google Scholar 

  • Zhou, S., Guo, S., Du, B., Huang, S. & Guo, J. A hybrid framework for multivariate time series forecasting of daily urban water demand using attention-based convolutional neural network and long short-term memory network. Sustainability 14, 11086 (2022).

    Google Scholar 

  • Ghannam, S. & Hussain, F. Comparison of deep learning approaches for forecasting urban short-term water demand: A Greater Sydney Region case study. Knowl. Based Syst. 275, 110660. https://doi.org/10.1016/j.knosys.2023.110660 (2023).

    Google Scholar 

  • Al-Ghamdi, A.-B., Kamel, S. & Khayyat, M. A hybrid neural network-based approach for forecasting water demand. Comput. Mater. Continua 73, 1365–1383 (2022).

    Google Scholar 

  • Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2623–2631 (2019).

  • Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied Linear Statistical Models 5th edn. (McGraw-Hill/Irwin, New York, NY, 2005).

    Google Scholar 

  • James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: With Applications in R (Springer, New York, NY, 2013).

    Google Scholar 

  • Continue Reading