Core-based recognition of well proppant particles using an enhanced ResNet model

  • Maity, D. & Ciezobka, J. Diagnostic assessment of reservoir response to fracturing: a case study from hydraulic fracturing test site (HFTS) in Midland basin. J. Petrol. Explor. Prod. Technol. 11, 3177–3192 (2021).

    Google Scholar 

  • Sahai, R. & Moghanloo, R. G. Proppant transport in complex fracture networks–A review. J. Petrol. Sci. Eng. 182, 106199 (2019).

    Google Scholar 

  • Maity, D., Ciezobka, J. & Eisenlord, S. Assessment of in-situ proppant placement in SRV using through-fracture core sampling at HFTS. in SPE/AAPG/SEG Unconventional Resources Technology Conference. D023S023R004 (URTeC, 2018).

  • Zhang, X., Zhang, S., Zou, Y. & Li, J. Effects of laminar structure on fracture propagation and proppant transportation in continental shale oil reservoirs with multiple lithological-combination. Int. J. Fract. 249, 3 (2025).

    Google Scholar 

  • Ciezobka, J. & Reeves, S. Overview of Hydraulic Fracturing Test Sites (HFTS) in the Permian Basin and Summary of Selected Results (HFTS-I in Midland and HFTS-II in Delaware). In: Proceedings of the 2020 Latin America Unconventional Resources Technology ConferenceUnconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2020-1544 (2020).

  • Ciezobka, J., Courtier, J. & Wicker, J. Hydraulic Fracturing Test Site (HFTS) – Project Overview and Summary of Results. in Proceedings of the 6th Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2018-2937168 (American Association of Petroleum Geologists, 2018).

  • Pudugramam, S. et al. American Association of Petroleum Geologists, Colorado Convention Center, Denver, Colorado, US,. A Comprehensive Simulation Study of Hydraulic Fracturing Test Site 2 (HFTS-2): Part I – Modeling Pressure Dependent and Time Dependent Fracture Conductivity in Fully Calibrated Fracture and Reservoir Models. In: Proceedings of the 11th Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2023-3864710 (2023).

  • Bessa, F. et al. American Association of Petroleum Geologists, Colorado Convention Center, Denver, Colorado, US,. A Comprehensive Simulation Study of Hydraulic Fracturing Test Site 2 (HFTS-2): Part II – Development Optimization in the Delaware Basin Using an Integrated Modeling Workflow. In: Proceedings of the 11th Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2023-3851681 (2023).

  • Rongli, X. et al. SPE,. Analysis and Understanding of Interwell Communication in Multiple Fracture Monitoring Technology: A Case Study of the Qingcheng Shale Oil Hydraulic Fracturing Field Lab. in SPE Gas & Oil Technology Showcase and Conference D022S002R001 (2025).

  • Maity, D. & Ciezobka, J. A systematic interpretation of subsurface proppant concentration from drilling mud returns: case study from hydraulic fracturing test site (HFTS-2) in Delaware basin. in SPE/AAPG/SEG Unconventional Resources Technology Conference D021S031R003. (URTEC, 2021).

  • Li, S. et al. Study on automatic lithology identification based on convolutional neural network and deep transfer learning. Discov Appl. Sci. 6, (2024).

  • Xiao, J. Lithology identification method of cuttings based on improved VGG16. in Sixth International Conference on Advanced Electronic Materials, Computers, and Software Engineering (AEMCSE). 12787 87–92. (SPIE, 2023).

  • Chawshin, K., Berg, C. F., Varagnolo, D. & Lopez, O. Lithology classification of whole core CT scans using convolutional neural networks. SN Appl. Sci. 3, (2021).

  • Zhang, Y., Li, M. & Han, S. Automatic identification and classification in lithology based on deep learning in rock images. Yanshi Xuebao/Acta Petrologica Sinica. 34, 333–342 (2018).

    Google Scholar 

  • Abdullah, M. A., Mohammed, A. A., Awad, S. R. & RockDNet Deep learning approach for lithology classification. Appl. Sci. 14, 5511 (2024).

    Google Scholar 

  • Zedong, M. A. et al. Multi-scale lithology recognition based on deep learning of rock images. Bull. Geol. Sci. Technol. 41, 316–322 (2022).

    Google Scholar 

  • Lin, N., Fu, J., Jiang, R., Li, G. & Yang, Q. Lithological classification by hyperspectral images based on a two-layer XGBoost model, combined with a greedy algorithm. Remote Sens. 15, 3764 (2023).

    Google Scholar 

  • Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S. R. & Armstrong, R. T. Automated lithology classification from drill core images using convolutional neural networks. J. Petrol. Sci. Eng. 197, 107933 (2021).

    Google Scholar 

  • Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intelligence. 679–698 (2009).

  • Maragos, P. & Schafer, R. Morphological skeleton representation and coding of binary images. IEEE Trans. Acoust. Speech Signal Process. 34, 1228–1244 (2003).

    Google Scholar 

  • Kornilov, A. S. & Safonov, I. V. An overview of watershed algorithm implementations in open source libraries. J. Imaging. 4, 123 (2018).

    Google Scholar 

  • Soille, P. Morphological Image Analysis (Springer Berlin Heidelberg, 2004). https://doi.org/10.1007/978-3-662-05088-0.

    Google Scholar 

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778. (2016).

  • Liu, Z. et al. KAN: Kolmogorov-Arnold Networks. arXiv:2404.19756 [cs.LG]. https://doi.org/10.48550/arXiv.2404.19756 (2025).

  • Zhang, X. et al. LDConv: linear deformable Convolution for improving Convolutional neural networks. Image Vis. Comput. 149, 105190 (2024).

    Google Scholar 

  • Ma, X., Dai, X., Bai, Y., Wang, Y. & Fu, Y. Rewrite the stars. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 5694–5703. (2024).

  • Hu, Q. et al. Damage location and area measurement of aviation functional surface via neural radiance field and improved Yolov8 network. Artif Intell. Rev. 58, (2024).

  • Zhang, X. et al. Starnet: an efficient Spatiotemporal feature sharing reconstructing network for automatic modulation classification. IEEE Trans. Wireless Commun. 23, 13300–13312 (2024).

    Google Scholar 

  • Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 7132–7141 (2018).

  • Han, D. et al. Demystify mamba in vision: a linear attention perspective. Adv. Neural Informat. Process. Syst. 37, 127181–127203 (2024).

    Google Scholar 

  • Continue Reading