Maity, D. & Ciezobka, J. Diagnostic assessment of reservoir response to fracturing: a case study from hydraulic fracturing test site (HFTS) in Midland basin. J. Petrol. Explor. Prod. Technol. 11, 3177–3192 (2021).
Sahai, R. & Moghanloo, R. G. Proppant transport in complex fracture networks–A review. J. Petrol. Sci. Eng. 182, 106199 (2019).
Maity, D., Ciezobka, J. & Eisenlord, S. Assessment of in-situ proppant placement in SRV using through-fracture core sampling at HFTS. in SPE/AAPG/SEG Unconventional Resources Technology Conference. D023S023R004 (URTeC, 2018).
Zhang, X., Zhang, S., Zou, Y. & Li, J. Effects of laminar structure on fracture propagation and proppant transportation in continental shale oil reservoirs with multiple lithological-combination. Int. J. Fract. 249, 3 (2025).
Ciezobka, J. & Reeves, S. Overview of Hydraulic Fracturing Test Sites (HFTS) in the Permian Basin and Summary of Selected Results (HFTS-I in Midland and HFTS-II in Delaware). In: Proceedings of the 2020 Latin America Unconventional Resources Technology ConferenceUnconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2020-1544 (2020).
Ciezobka, J., Courtier, J. & Wicker, J. Hydraulic Fracturing Test Site (HFTS) – Project Overview and Summary of Results. in Proceedings of the 6th Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2018-2937168 (American Association of Petroleum Geologists, 2018).
Pudugramam, S. et al. American Association of Petroleum Geologists, Colorado Convention Center, Denver, Colorado, US,. A Comprehensive Simulation Study of Hydraulic Fracturing Test Site 2 (HFTS-2): Part I – Modeling Pressure Dependent and Time Dependent Fracture Conductivity in Fully Calibrated Fracture and Reservoir Models. In: Proceedings of the 11th Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2023-3864710 (2023).
Bessa, F. et al. American Association of Petroleum Geologists, Colorado Convention Center, Denver, Colorado, US,. A Comprehensive Simulation Study of Hydraulic Fracturing Test Site 2 (HFTS-2): Part II – Development Optimization in the Delaware Basin Using an Integrated Modeling Workflow. In: Proceedings of the 11th Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2023-3851681 (2023).
Rongli, X. et al. SPE,. Analysis and Understanding of Interwell Communication in Multiple Fracture Monitoring Technology: A Case Study of the Qingcheng Shale Oil Hydraulic Fracturing Field Lab. in SPE Gas & Oil Technology Showcase and Conference D022S002R001 (2025).
Maity, D. & Ciezobka, J. A systematic interpretation of subsurface proppant concentration from drilling mud returns: case study from hydraulic fracturing test site (HFTS-2) in Delaware basin. in SPE/AAPG/SEG Unconventional Resources Technology Conference D021S031R003. (URTEC, 2021).
Li, S. et al. Study on automatic lithology identification based on convolutional neural network and deep transfer learning. Discov Appl. Sci. 6, (2024).
Xiao, J. Lithology identification method of cuttings based on improved VGG16. in Sixth International Conference on Advanced Electronic Materials, Computers, and Software Engineering (AEMCSE). 12787 87–92. (SPIE, 2023).
Chawshin, K., Berg, C. F., Varagnolo, D. & Lopez, O. Lithology classification of whole core CT scans using convolutional neural networks. SN Appl. Sci. 3, (2021).
Zhang, Y., Li, M. & Han, S. Automatic identification and classification in lithology based on deep learning in rock images. Yanshi Xuebao/Acta Petrologica Sinica. 34, 333–342 (2018).
Abdullah, M. A., Mohammed, A. A., Awad, S. R. & RockDNet Deep learning approach for lithology classification. Appl. Sci. 14, 5511 (2024).
Zedong, M. A. et al. Multi-scale lithology recognition based on deep learning of rock images. Bull. Geol. Sci. Technol. 41, 316–322 (2022).
Lin, N., Fu, J., Jiang, R., Li, G. & Yang, Q. Lithological classification by hyperspectral images based on a two-layer XGBoost model, combined with a greedy algorithm. Remote Sens. 15, 3764 (2023).
Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S. R. & Armstrong, R. T. Automated lithology classification from drill core images using convolutional neural networks. J. Petrol. Sci. Eng. 197, 107933 (2021).
Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intelligence. 679–698 (2009).
Maragos, P. & Schafer, R. Morphological skeleton representation and coding of binary images. IEEE Trans. Acoust. Speech Signal Process. 34, 1228–1244 (2003).
Kornilov, A. S. & Safonov, I. V. An overview of watershed algorithm implementations in open source libraries. J. Imaging. 4, 123 (2018).
Soille, P. Morphological Image Analysis (Springer Berlin Heidelberg, 2004). https://doi.org/10.1007/978-3-662-05088-0.
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778. (2016).
Liu, Z. et al. KAN: Kolmogorov-Arnold Networks. arXiv:2404.19756 [cs.LG]. https://doi.org/10.48550/arXiv.2404.19756 (2025).
Zhang, X. et al. LDConv: linear deformable Convolution for improving Convolutional neural networks. Image Vis. Comput. 149, 105190 (2024).
Ma, X., Dai, X., Bai, Y., Wang, Y. & Fu, Y. Rewrite the stars. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 5694–5703. (2024).
Hu, Q. et al. Damage location and area measurement of aviation functional surface via neural radiance field and improved Yolov8 network. Artif Intell. Rev. 58, (2024).
Zhang, X. et al. Starnet: an efficient Spatiotemporal feature sharing reconstructing network for automatic modulation classification. IEEE Trans. Wireless Commun. 23, 13300–13312 (2024).
Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 7132–7141 (2018).
Han, D. et al. Demystify mamba in vision: a linear attention perspective. Adv. Neural Informat. Process. Syst. 37, 127181–127203 (2024).