Ahmad, N., Ghadi, Y., Adnan, M. & Ali, M. Load forecasting techniques for power system: research challenges and survey. IEEE Access 10, 71054–71090. https://doi.org/10.1109/ACCESS.2022.3187839 (2022).
Khan, S. Short-term electricity load forecasting using a new intelligence-based application. Sustainability https://doi.org/10.3390/su151612311 (2023).
Udendhran, R. et al. Transitioning to sustainable E-vehicle systems – Global perspectives on the challenges, policies, and opportunities. J. Hazard. Mater. Adv. 17, 100619. https://doi.org/10.1016/J.HAZADV.2025.100619 (2025).
Elahe, M. F., Kabir, M. A., Mahmud, S. M. H. & Azim, R. Factors impacting short-term load forecasting of charging station to electric vehicle. Electronics (Switzerland) https://doi.org/10.3390/electronics12010055 (2023).
Ran, J., Gong, Y., Hu, Y. & Cai, J. L. EV load forecasting using a refined CNN-LSTM-AM. Electr. Power Syst. Res. 238(August), 2025. https://doi.org/10.1016/j.epsr.2024.111091 (2024).
Van Kriekinge, G., De Cauwer, C., Sapountzoglou, N., Coosemans, T. & Messagie, M. Day-ahead forecast of electric vehicle charging demand with deep neural networks. World Electric Veh. J. https://doi.org/10.3390/wevj12040178 (2021).
Cheng, S., Wei, Z., Shang, D., Zhao, Z. & Chen, H. Charging load prediction and distribution network reliability evaluation considering electric vehicles’ spatial-temporal transfer randomness. IEEE Access 8, 124084–124096. https://doi.org/10.1109/ACCESS.2020.3006093 (2020).
S. Su, H. Zhao, H. Zhang, X. Lin, F. Yang, and Z. Li, Forecast of electric vehicle charging demand based on traffic flow model and optimal path planning. In: 2017 19th International Conference on Intelligent System Application to Power Systems, ISAP 2017. https://doi.org/10.1109/ISAP.2017.8071382. (2017).
Tang, D. & Wang, P. Probabilistic modeling of nodal charging demand based on spatial-temporal dynamics of moving electric vehicles. IEEE Trans. Smart Grid 7(2), 627–636. https://doi.org/10.1109/TSG.2015.2437415 (2016).
Zhang, Q., Chen, J., Xiao, G., He, S. & Deng, K. TransformGraph: A novel short-term electricity net load forecasting model. Energy Rep. 9, 2705–2717. https://doi.org/10.1016/j.egyr.2023.01.050 (2023).
Gao, S. X., Liu, H. & Ota, J. Energy-efficient buffer and service rate allocation in manufacturing systems using hybrid machine learning and evolutionary algorithms. Adv. Manuf 12(2), 227–251. https://doi.org/10.1007/S40436-023-00461-1/FIGURES/9 (2024).
Amini, M. H., Kargarian, A. & Karabasoglu, O. ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electr. Power Syst. Res. 140, 378–390. https://doi.org/10.1016/J.EPSR.2016.06.003 (2016).
Louie, H. M. Time-series modeling of aggregated electric vehicle charging station load. Electr. Power Compon. Syst. 45(14), 1498–1511. https://doi.org/10.1080/15325008.2017.1336583 (2017).
A. Gautam, A. K. Verma, and M. Srivastava. A novel algorithm for scheduling of electric vehicle using adaptive load forecasting with vehicle-to-grid integration. In: 2019 8th International Conference on Power Systems: Transition towards Sustainable, Smart and Flexible Grids, ICPS 2019. https://doi.org/10.1109/ICPS48983.2019.9067702. (2019).
Almaghrebi, A., Aljuheshi, F., Rafaie, M., James, K. & Alahmad, M. Data-driven charging demand prediction at public charging stations using supervised machine learning regression methods. Energies (Basel) https://doi.org/10.3390/en13164231 (2020).
Peng, Y. & Unluer, C. Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms. Resour. Conserv. Recycl. 190, 106812. https://doi.org/10.1016/j.resconrec.2022.106812 (2022).
Zhu, J., Yang, Z., Guo, Y., Zhang, J. & Yang, H. Short-term load forecasting for electric vehicle charging stations based on deep learning approaches. Appl. Sci. (Switzerland) https://doi.org/10.3390/app9091723 (2019).
Aduama, P., Zhang, Z. & Al-Sumaiti, A. S. Multi-feature data fusion-based load forecasting of electric vehicle charging stations using a deep learning model. Energies (Basel) https://doi.org/10.3390/en16031309 (2023).
Van Kriekinge, G., De Cauwer, C., Sapountzoglou, N., Coosemans, T. & Messagie, M. Day-ahead forecast of electric vehicle charging demand with deep neural networks. World Electr. Veh. J. 12(4), 178. https://doi.org/10.3390/WEVJ12040178 (2021).
Li, Y. et al. Probabilistic charging power forecast of EVCS: reinforcement learning assisted deep learning approach. IEEE Trans. Intell. Veh. 8(1), 344–357. https://doi.org/10.1109/TIV.2022.3168577 (2023).
Zhou, D. et al. Using Bayesian deep learning for electric vehicle charging station load forecasting. Energies 15(17), 6195. https://doi.org/10.3390/EN15176195 (2022).
Mohammad, F., Kang, D. K., Ahmed, M. A. & Kim, Y. C. Energy demand load forecasting for electric vehicle charging stations network based on ConvLSTM and BiConvLSTM architectures. IEEE Access 11, 67350–67369. https://doi.org/10.1109/ACCESS.2023.3274657 (2023).
Naveed, M. S. et al. Enhanced accuracy in solar irradiance forecasting through machine learning stack-based ensemble approach. Int. J. Green Energy https://doi.org/10.1080/15435075.2025.2450468 (2025).
Naveed, M. S. et al. Leveraging advanced AI algorithms with transformer-infused recurrent neural networks to optimize solar irradiance forecasting. Front. Energy Res. https://doi.org/10.3389/fenrg.2024.1485690 (2024).
Hanif, J. M. M. F. et al. The Solar AI Nexus: Reinforcement Learning Shaping the Future of Energy Management (Wiley, 2025).
D.-E. L. Yuvaraj Natarajan, Sri Preethaa K. R, Gitanjali Wadhwa, Young Choi, Zengshun Chen, D.-E. Lee, and Y. M. Scholar, SciProfilesScilitPreprints.orgGoogle. Enhancing building energy efficiency with IoT-driven hybrid deep learning models for accurate energy consumption prediction. Coimbatore 641407, India. https://www.mdpi.com/2071-1050/16/5/1925.
ACN-Dataset. https://ev.caltech.edu/dataset.
T. Chen, C. G.-P. of the 22nd acm sigkdd international, and undefined 2016. Xgboost: A scalable tree boosting system. dl.acm.orgT Chen, C GuestrinProceedings of the 22nd acm sigkdd international conference on knowledge, 2016•dl.acm.org, 13–17, 785–794. https://doi.org/10.1145/2939672.2939785. (2016).
Z. Huang, W. Xu, and K. Yu. Bidirectional LSTM-CRF Models for Sequence Tagging. http://arxiv.org/abs/1508.01991. (2015).