Electric vehicles charging stations load forecasting based on hybrid XGBoost-BiLSTM model

  • Ahmad, N., Ghadi, Y., Adnan, M. & Ali, M. Load forecasting techniques for power system: research challenges and survey. IEEE Access 10, 71054–71090. https://doi.org/10.1109/ACCESS.2022.3187839 (2022).

    Google Scholar 

  • Khan, S. Short-term electricity load forecasting using a new intelligence-based application. Sustainability https://doi.org/10.3390/su151612311 (2023).

    Google Scholar 

  • Udendhran, R. et al. Transitioning to sustainable E-vehicle systems – Global perspectives on the challenges, policies, and opportunities. J. Hazard. Mater. Adv. 17, 100619. https://doi.org/10.1016/J.HAZADV.2025.100619 (2025).

    Google Scholar 

  • Elahe, M. F., Kabir, M. A., Mahmud, S. M. H. & Azim, R. Factors impacting short-term load forecasting of charging station to electric vehicle. Electronics (Switzerland) https://doi.org/10.3390/electronics12010055 (2023).

    Google Scholar 

  • Ran, J., Gong, Y., Hu, Y. & Cai, J. L. EV load forecasting using a refined CNN-LSTM-AM. Electr. Power Syst. Res. 238(August), 2025. https://doi.org/10.1016/j.epsr.2024.111091 (2024).

    Google Scholar 

  • Van Kriekinge, G., De Cauwer, C., Sapountzoglou, N., Coosemans, T. & Messagie, M. Day-ahead forecast of electric vehicle charging demand with deep neural networks. World Electric Veh. J. https://doi.org/10.3390/wevj12040178 (2021).

    Google Scholar 

  • Cheng, S., Wei, Z., Shang, D., Zhao, Z. & Chen, H. Charging load prediction and distribution network reliability evaluation considering electric vehicles’ spatial-temporal transfer randomness. IEEE Access 8, 124084–124096. https://doi.org/10.1109/ACCESS.2020.3006093 (2020).

    Google Scholar 

  • S. Su, H. Zhao, H. Zhang, X. Lin, F. Yang, and Z. Li, Forecast of electric vehicle charging demand based on traffic flow model and optimal path planning. In: 2017 19th International Conference on Intelligent System Application to Power Systems, ISAP 2017. https://doi.org/10.1109/ISAP.2017.8071382. (2017).

  • Tang, D. & Wang, P. Probabilistic modeling of nodal charging demand based on spatial-temporal dynamics of moving electric vehicles. IEEE Trans. Smart Grid 7(2), 627–636. https://doi.org/10.1109/TSG.2015.2437415 (2016).

    Google Scholar 

  • Zhang, Q., Chen, J., Xiao, G., He, S. & Deng, K. TransformGraph: A novel short-term electricity net load forecasting model. Energy Rep. 9, 2705–2717. https://doi.org/10.1016/j.egyr.2023.01.050 (2023).

    Google Scholar 

  • Gao, S. X., Liu, H. & Ota, J. Energy-efficient buffer and service rate allocation in manufacturing systems using hybrid machine learning and evolutionary algorithms. Adv. Manuf 12(2), 227–251. https://doi.org/10.1007/S40436-023-00461-1/FIGURES/9 (2024).

    Google Scholar 

  • Amini, M. H., Kargarian, A. & Karabasoglu, O. ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electr. Power Syst. Res. 140, 378–390. https://doi.org/10.1016/J.EPSR.2016.06.003 (2016).

    Google Scholar 

  • Louie, H. M. Time-series modeling of aggregated electric vehicle charging station load. Electr. Power Compon. Syst. 45(14), 1498–1511. https://doi.org/10.1080/15325008.2017.1336583 (2017).

    Google Scholar 

  • A. Gautam, A. K. Verma, and M. Srivastava. A novel algorithm for scheduling of electric vehicle using adaptive load forecasting with vehicle-to-grid integration. In: 2019 8th International Conference on Power Systems: Transition towards Sustainable, Smart and Flexible Grids, ICPS 2019. https://doi.org/10.1109/ICPS48983.2019.9067702. (2019).

  • Almaghrebi, A., Aljuheshi, F., Rafaie, M., James, K. & Alahmad, M. Data-driven charging demand prediction at public charging stations using supervised machine learning regression methods. Energies (Basel) https://doi.org/10.3390/en13164231 (2020).

    Google Scholar 

  • Peng, Y. & Unluer, C. Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms. Resour. Conserv. Recycl. 190, 106812. https://doi.org/10.1016/j.resconrec.2022.106812 (2022).

    Google Scholar 

  • Zhu, J., Yang, Z., Guo, Y., Zhang, J. & Yang, H. Short-term load forecasting for electric vehicle charging stations based on deep learning approaches. Appl. Sci. (Switzerland) https://doi.org/10.3390/app9091723 (2019).

    Google Scholar 

  • Aduama, P., Zhang, Z. & Al-Sumaiti, A. S. Multi-feature data fusion-based load forecasting of electric vehicle charging stations using a deep learning model. Energies (Basel) https://doi.org/10.3390/en16031309 (2023).

    Google Scholar 

  • Van Kriekinge, G., De Cauwer, C., Sapountzoglou, N., Coosemans, T. & Messagie, M. Day-ahead forecast of electric vehicle charging demand with deep neural networks. World Electr. Veh. J. 12(4), 178. https://doi.org/10.3390/WEVJ12040178 (2021).

    Google Scholar 

  • Li, Y. et al. Probabilistic charging power forecast of EVCS: reinforcement learning assisted deep learning approach. IEEE Trans. Intell. Veh. 8(1), 344–357. https://doi.org/10.1109/TIV.2022.3168577 (2023).

    Google Scholar 

  • Zhou, D. et al. Using Bayesian deep learning for electric vehicle charging station load forecasting. Energies 15(17), 6195. https://doi.org/10.3390/EN15176195 (2022).

    Google Scholar 

  • Mohammad, F., Kang, D. K., Ahmed, M. A. & Kim, Y. C. Energy demand load forecasting for electric vehicle charging stations network based on ConvLSTM and BiConvLSTM architectures. IEEE Access 11, 67350–67369. https://doi.org/10.1109/ACCESS.2023.3274657 (2023).

    Google Scholar 

  • Naveed, M. S. et al. Enhanced accuracy in solar irradiance forecasting through machine learning stack-based ensemble approach. Int. J. Green Energy https://doi.org/10.1080/15435075.2025.2450468 (2025).

    Google Scholar 

  • Naveed, M. S. et al. Leveraging advanced AI algorithms with transformer-infused recurrent neural networks to optimize solar irradiance forecasting. Front. Energy Res. https://doi.org/10.3389/fenrg.2024.1485690 (2024).

    Google Scholar 

  • Hanif, J. M. M. F. et al. The Solar AI Nexus: Reinforcement Learning Shaping the Future of Energy Management (Wiley, 2025).

    Google Scholar 

  • D.-E. L. Yuvaraj Natarajan, Sri Preethaa K. R, Gitanjali Wadhwa, Young Choi, Zengshun Chen, D.-E. Lee, and Y. M. Scholar, SciProfilesScilitPreprints.orgGoogle. Enhancing building energy efficiency with IoT-driven hybrid deep learning models for accurate energy consumption prediction. Coimbatore 641407, India. https://www.mdpi.com/2071-1050/16/5/1925.

  • ACN-Dataset. https://ev.caltech.edu/dataset.

  • T. Chen, C. G.-P. of the 22nd acm sigkdd international, and undefined 2016. Xgboost: A scalable tree boosting system. dl.acm.orgT Chen, C GuestrinProceedings of the 22nd acm sigkdd international conference on knowledge, 2016•dl.acm.org, 13–17, 785–794. https://doi.org/10.1145/2939672.2939785. (2016).

  • Z. Huang, W. Xu, and K. Yu. Bidirectional LSTM-CRF Models for Sequence Tagging. http://arxiv.org/abs/1508.01991. (2015).

  • Continue Reading