Brown, P. G. et al. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238–241 (2013).
Google Scholar
Greenwood, R. C., Burbine, T. H. & Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta 277, 377–406 (2020).
Google Scholar
Sárneczky, K. 2023 CX1. Minor Planet Electron. Circ. 2024-C103, 1 (2024).
Colas, F. et al. The FRIPON and Vigie-Ciel networks. In Proc. International Meteor Conference (eds Rault, J.-L. & Roggemans, P.) 34–38 (International Meteor Organization, 2014).
Colas, F. et al. FRIPON: a worldwide network to track incoming meteoroids. Astron. Astrophys. 644, A53 (2020).
Google Scholar
Jenniskens, P. & Colas, F. 2023 CX1. Cent. Bur. Electron. Telegr. 5221, 1 (2023).
Zanda, B. et al. Recovery and planned study of the Saint-Pierre-le-Viger meteorite: an achievement of the FRIPON/Vigie-Ciel citizen science program. LPI Contrib. 2990, 6206 (2023).
Google Scholar
Gattacceca, J. et al. The Meteoritical Bulletin, No. 112. Meteorit. Planet. Sci. 59, 1820–1823 (2024).
Google Scholar
Bischoff, A. et al. Saint-Pierre-le-Viger (L5–6) from asteroid 2023 CX1 recovered in Normandy, France—220 years after the historic fall of L’Aigle (L6 breccia) in the neighborhood. Meteorit. Planet. Sci. 58, 1385–1398 (2023).
Google Scholar
Devogèle, M. et al. Aperture photometry on asteroid trails: detection of the fastest rotating near-Earth object. Astron. Astrophys. 689, A63 (2024).
Google Scholar
Popova, O., Borovička, J. & Campbell-Brown, M. D. in Meteoroids: Sources of Meteors on Earth and Beyond (eds Ryabova, G. O. et al.) 9 (Cambridge Univ. Press, 2019).
Fadeenko, Y. I. Destruction of meteoroids in the atmosphere. Combust. Explos. Shock Waves 3, 172–174 (1967).
Google Scholar
Popova, O. et al. Very low strengths of interplanetary meteoroids and small asteroids. Meteorit. Planet. Sci. 46, 1525–1550 (2011).
Google Scholar
Borovička, J., Spurný, P. & Shrbený, L. Two strengths of ordinary chondritic meteoroids as derived from their atmospheric fragmentation modeling. Astron. J. 160, 42 (2020).
Google Scholar
Jenniskens, P. et al. Bolide fragmentation: what parts of asteroid 2008 TC3 survived to the ground? Meteorit. Planet. Sci. 57, 1641–1664 (2022).
Google Scholar
Whipple, A. L. Lyapunov times of the inner asteroids. Icarus 115, 347–353 (1995).
Google Scholar
Swindle, T. D., Kring, D. A. & Weirich, J. R. in Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences (eds Jourdan, F. et al.) 333–347 (Geological Society, 2014).
Herzog, G. F. & Caffee, M. W. in Meteorites and Cosmochemical Processes (ed. Davis, A. M.) 419–454 (Elsevier, 2014).
Brown, P. G. et al. The Golden meteorite fall: fireball trajectory, orbit, and meteorite characterization. Meteorit. Planet. Sci. 58, 1773–1807 (2023).
Google Scholar
Povinec, P. P. et al. Radionuclides in Chassigny and Nakhla meteorites of Mars origin: implications for their pre-atmospheric sizes and cosmic-ray exposure ages. Planet. Space Sci. 186, 104914 (2020).
Google Scholar
Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature 634, 566–571 (2024).
Google Scholar
Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature 634, 561–565 (2024).
Google Scholar
Ceplecha, Z., Spurný, P., Borovička, J. & Keclikova, J. Atmospheric fragmentation of meteoroids. Astron. Astrophys. 279, 615–626 (1993).
Google Scholar
Borovička, J. & Spurný, P. The Carancas meteorite impact-encounter with a monolithic meteoroid. Astron. Astrophys. 485, L1–L4 (2008).
Google Scholar
Brown, P. et al. Analysis of a crater-forming meteorite impact in Peru. J. Geophys. Res.: Planets 113, E09007 (2008).
Google Scholar
Borovička, J., Spurný, P., Grigore, V. I. & Svoreň, J. The January 7, 2015, superbolide over Romania and structural diversity of meter-sized asteroids. Planet. Space Sci. 143, 147–158 (2017).
Google Scholar
Vida, D. et al. Novo Mesto meteorite fall—trajectory, orbit, and fragmentation analysis from optical observations. In Proc. Europlanet Science Congress 2021 https://doi.org/10.5194/epsc2021-139 (Copernicus Meetings, 2021).
Vida, D. et al. Accurate characterization of metre-sized impactors through casual bolide observations—Novo Mesto superbolide as evidence for a new class of high-risk objects. In Proc. 8th IAA Planetary Defense Conference (International Academy of Astronautics, 2023).
Jenniskens, P. et al. Orbit and origin of the LL7 chondrite Dishchii’bikoh (Arizona). Meteorit. Planet. Sci. 55, 535–557 (2020).
Google Scholar
Morrison, D. Tunguska Workshop: Applying Modern Tools to Understand the 1908 Tunguska Impact. Technical Memorandum NASA/TM–220174 (NASA, 2018).
Trigo-Rodríguez, J. M. et al. A numerical approach to study ablation of large bolides: application to Chelyabinsk. Adv. Astron. 2021, 8852772 (2021).
Google Scholar
Moskovitz, N. A. et al. A common origin for dynamically associated near-Earth asteroid pairs. Icarus 333, 165–176 (2019).
Google Scholar
Mommert, M. PHOTOMETRYPIPELINE: an automated pipeline for calibrated photometry. Astron. Comput. 18, 47–53 (2017).
Google Scholar
Gaia Collaboration. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Google Scholar
Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Astrophys. J. Suppl. Ser. 251, 7 (2020).
Google Scholar
Bowell, E. et al. in Asteroids II (eds Binzel, R. P. et al.) 524–556 (Univ. Arizona Press, 1989).
Pál, A. FITSH: a software package for image processing. Mon. Not. R. Astron. Soc. 421, 1825–1837 (2012).
Google Scholar
Colomé, J. et al. The OAdM robotic observatory. Adv. Astron. 2010, 183016 (2010).
Google Scholar
Raab, H. Astrometrica: astrometric data reduction of CCD images. Astrophys. Source Code Library ascl:1230.012 (2012).
Gaffey, M. J. et al. Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993).
Google Scholar
Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113 (2011).
Google Scholar
Berthier, J., Carry, B., Mahlke, M. & Normand, J. SsODNet: Solar System Open Database Network. Astron. Astrophys. 671, A151 (2023).
Google Scholar
DeMeo, F. E. & Carry, B. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226, 723–741 (2013).
Google Scholar
Usui, F. et al. Albedo properties of main belt asteroids based on the all-sky survey of the infrared astronomical satellite AKARI. Astrophys. J. 762, 56 (2013).
Google Scholar
Eberhardt, P., Geiss, J. & Lutz, H. Neutrons in meteorites. Earth Sci. Meteorit. 34, 143–168 (1963).
Wieler, R. et al. Exposure history of the Torino meteorite. Meteorit. Planet. Sci. 31, 265–272 (1996).
Google Scholar
Leya, I. & Masarik, J. Cosmogenic nuclides in stony meteorites revisited. Meteorit. Planet. Sci. 44, 1061–1086 (2009).
Google Scholar
Leya, I., Hirtz, J. & David, J.-C. Galactic cosmic rays, cosmic-ray variations, and cosmogenic nuclides in meteorites. Astrophys. J. 910, 136 (2021).
Google Scholar
Borovička, J. The comparison of two methods of determining meteor trajectories from photographs. Bull. Astron. Inst. Czechoslov. 41, 391 (1990).
Google Scholar
Borovička, J. et al. Data on 824 fireballs observed by the digital cameras of the European Fireball Network in 2017-2018. I. Description of the network, data reduction procedures, and the catalog. Astron. Astrophys. 667, A97 (2022).
Vida, D., Gural, P. S., Brown, P. G., Campbell-Brown, M. & Wiegert, P. Estimating trajectories of meteors: an observational Monte Carlo approach. I. Theory. Mon. Not. R. Astron. Soc. 491, 2688–2705 (2019).
Google Scholar
Ceplecha, Z. & Revelle, D. O. Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteorit. Planet. Sci. 40, 35 (2005).
Google Scholar
Edwards, W. N., Brown, P. G. & ReVelle, D. O. Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J. Atmos. Sol.-Terr. Phys. 68, 1136–1160 (2006).
Google Scholar
Ens, T. A., Brown, P. G., Edwards, W. N. & Silber, E. Infrasound production by bolides: a global statistical study. J. Atmos. Sol.-Terr. Phys. 80, 208–229 (2012).
Google Scholar
Gi, N. & Brown, P. G. Refinement of bolide characteristics from infrasound measurements. Planet. Space Sci. 143, 169–181 (2017).
Google Scholar
ReVelle, D. O. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Ann. NY Acad. Sci. 822, 284–302 (1997).
Google Scholar
RESIF-RLBP French Broad-band network, RESIF-RAP strong motion network and other seismic stations in metropolitan France. RESIF Information System https://doi.org/10.15778/RESIF.FR (1995).
Virieux, J., Garnier, N., Blanc, E. & Dessa, J.-X. Paraxial ray tracing for atmospheric wave propagation. Geophys. Res. Lett. 31, L20106 (2004).
Google Scholar
Listowski, C. et al. Stratospheric gravity waves impact on infrasound transmission losses across the International Monitoring System. Pure Appl. Geophys. 181, 33 (2024).
Moré, J. J. in Numerical Analysis (ed. Watson, G. A.) 105–116 (Springer, 2006).
Riebe, M. E. I. et al. Cosmic-ray exposure ages of six chondritic Almahata Sitta fragments. Meteorit. Planet. Sci. 52, 2353–2374 (2017).
Google Scholar
Wieler, R. Cosmic-ray-produced noble gases in meteorites. Rev. Mineral. Geochem. 47, 125–170 (2002).
Google Scholar
Leya, I. et al. Calibration of cosmogenic noble gas production based on 36Cl-36Ar ages. Part 2. The 81Kr-Kr dating technique. Meteorit. Planet. Sci. 50, 1863–1879 (2015).
Google Scholar
Martin, I. H. M. J. A=71. Zn, Ga, Ge, As, Se, Br, Kr. Nucl. Data Sheets Sect. B 1, 13–26 (1966).
Google Scholar
Nishiizumi, K., Regnier, S. & Marti, K. Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past. Earth Planet. Sci. Lett. 50, 156–170 (1980).
Google Scholar
Dalcher, N. et al. Calibration of cosmogenic noble gas production in ordinary chondrites based on 36Cl-36Ar ages. Part 1. Refined production rates for cosmogenic 21Ne and 38Ar. Meteorit. Planet. Sci. 48, 1841–1862 (2013).
Google Scholar
Lewis, J. A. & Jones, R. H. Phosphate and feldspar mineralogy of equilibrated L chondrites: the record of metasomatism during metamorphism in ordinary chondrite parent bodies. Meteorit. Planet. Sci. 51, 1886–1913 (2016).
Google Scholar
Povinec, P., Sýkora, I., Ferrière, L. & Koeberl, C. Analyses of radionuclides in the Oued Awlitis 001 and Galb Inal lunar meteorites by HPGe gamma-ray spectrometry. J. Radioanal. Nucl. Chem. 324, 349–357 (2020).
Google Scholar
Kováčik, A., Sýkora, I. & Povinec, P. P. Monte Carlo and experimental efficiency calibration of gamma-spectrometers for non-destructive analysis of large volume samples of irregular shapes. J. Radioanal. Nucl. Chem. 298, 665–672 (2013).
Google Scholar
Eugster, O., Busemann, H., Lorenzetti, S. & Terribilini, D. Ejection ages from krypton-81-krypton-83 dating and pre-atmospheric sizes of Martian meteorites. Meteorit. Planet. Sci. 37, 1345–1360 (2002).
Google Scholar
Martschini, M. et al. 5 years of ion-laser interaction mass spectrometry—status and prospects of isobar suppression in IAMS by lasers. Radiocarbon 64, 555–568 (2022).
Google Scholar
Lachner, J. et al. Highly sensitive 26Al measurements by ion-laser-interaction mass spectrometry. Int. J. Mass Spectrom. 465, 116576 (2021).
Google Scholar
Rugel, G. et al. The first four years of the AMS-facility DREAMS: status and developments for more accurate radionuclide data. Nucl. Instrum. Methods Phys. Res. Sect. B 370, 94–100 (2016).
Google Scholar
Cripe, J. D. & Moore, C. B. Total sulfur content of ordinary chondrites. Meteoritics 10, 387 (1975).
Google Scholar
Grady, M. M., Wright, I. P. & Pillinger, C. T. A preliminary investigation into the nature of carbonaceous material in ordinary chondrites. Meteoritics 24, 147 (1989).
Google Scholar
Hashizume, K. & Sugiura, N. Nitrogen isotopes in bulk ordinary chondrites. Geochim. Cosmochim. Acta 59, 4057–4069 (1995).
Google Scholar
Graf, T. et al. Cosmogenic nuclides and nuclear tracks in the chondrite Knyahinya. Geochim. Cosmochim. Acta 54, 2511–2520 (1990).
Google Scholar
Bischoff, A. et al. The anomalous polymict ordinary chondrite breccia of Elmshorn (H3-6)—late reaccretion after collision between two ordinary chondrite parent bodies, complete disruption, and mixing possibly about 2.8 Gyr ago. Meteorit. Planet. Sci. 59, 2321–2356 (2024).
Google Scholar
Standish, E. M. JPL Planetary and Lunar Ephemerides. Interoffice Memo DE405/LE405 (JPL, 1998).
Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).
Google Scholar
Nesvorný, D. et al. NEOMOD: a new orbital distribution model for near-Earth objects. Astron. J. 166, 77 (2023).
Google Scholar
Egal, A. et al. 2023 CX1 – Saint-Pierre-le-Viger data. Zenodo https://doi.org/10.5281/zenodo.15328378 (2025).