Addressing the safety of next-generation batteries

  • Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

    Article 

    Google Scholar 

  • Li, Z. et al. Revealing the thermal safety of Prussian blue cathode for safer nonaqueous batteries. Adv. Energy Mater. 11, 2101764 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lee, J., Lee, T., Char, K., Kim, K. J. & Choi, J. W. Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 54, 3390–3402 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14, 2577–2619 (2021).

    Article 
    CAS 

    Google Scholar 

  • Darmet, N., Charbonnel, J., Reytier, M., Broche, L. & Vincent, R. First experimental assessment of all-solid-state battery thermal runaway propagation in a battery pack. ACS Appl. Energy Mater. 7, 4365–4375 (2024).

    Article 
    CAS 

    Google Scholar 

  • Charbonnel, J. et al. Preliminary study of all-solid-state batteries: evaluation of blast formation during the thermal runaway. iScience 26, 108078 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, T. et al. Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries. Chem. Mater. 34, 9159–9171 (2022).

    Article 
    CAS 

    Google Scholar 

  • Duh, Y.-S., Theng, J.-H., Chen, C.-C. & Kao, C.-S. Comparative study on thermal runaway of commercial 14500, 18650 and 26650 LiFePO4 batteries used in electric vehicles. J. Energy Storage 31, 101580 (2020).

    Article 

    Google Scholar 

  • Zhang, S. et al. Room-temperature, high-voltage solid-state lithium battery with composite solid polymer electrolyte with in-situ thermal safety study. Chem. Eng. J. 400, 125996 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zeng, Z. et al. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte. Adv. Sci. 3, 1600066 (2016).

    Article 

    Google Scholar 

  • Gribble, D. A. et al. Mechanistic elucidation of electronically conductive PEDOT:PSS tailored binder for a potassium-ion battery graphite anode: electrochemical, mechanical, and thermal safety aspects. Adv. Energy Mater. 12, 2103439 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yang, H., Zhuang, G. V. & Ross, P. N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources 161, 573–579 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wu, Y., Wang, S., Li, H., Chen, L. & Wu, F. Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat 3, 827–853 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, J. et al. Advances in thermal-related analysis techniques for solid-state lithium batteries. InfoMat 5, e12401 (2023).

    Article 
    CAS 

    Google Scholar 

  • Adams, R. A., Varma, A. & Pol, V. G. Mechanistic elucidation of thermal runaway in potassium-ion batteries. J. Power Sources 375, 131–137 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Charbonnel, J. et al. Safety evaluation of all-solid-state batteries: an innovative methodology using in situ synchrotron X-ray radiography. ACS Appl. Energy Mater. 5, 10862–10871 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ohneseit, S. et al. Thermal and mechanical safety assessment of type 21700 lithium-ion batteries with NMC, NCA and LFP cathodes–investigation of cell abuse by means of accelerating rate calorimetry (ARC). Batteries 9, 237 (2023).

    Article 
    CAS 

    Google Scholar 

  • Bugryniec, P. J. et al. Review of gas emissions from lithium-ion battery thermal runaway failure — considering toxic and flammable compounds. J. Energy Storage 87, 111288 (2024).

    Article 

    Google Scholar 

  • Lin, L. & Ezekoye, O. A. Time-resolved characterization of toxic and flammable gases during venting of Li-ion cylindrical cells with current interrupt devices. J. Loss Prev. Process Ind. 94, 105488 (2025).

    Article 
    CAS 

    Google Scholar 

  • Liu, T., Kum, L. W., Singh, D. K. & Kumar, J. Thermal, electrical, and environmental safeties of sulfide electrolyte-based all-solid-state Li-ion batteries. ACS Omega 8, 12411–12417 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, S. S. et al. Solid electrolyte: strategies to address the safety of all solid-state batteries. Adv. Energy Sustain. Res. 4, 2300074 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, S. et al. Thermal stability between sulfide solid electrolytes and oxide cathode. ACS Nano 16, 16158–16176 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, S. & Xu, J. Safety behaviors and degradation mechanisms of aged batteries: a review. Energy Mater. Devices 2, 9370048 (2024).

    Article 

    Google Scholar 

  • Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heenan, T. M. M. et al. Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv. Energy Mater. 10, 2002655 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sadd, M., Xiong, S., Bowen, J. R., Marone, F. & Matic, A. Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy. Nat. Commun. 14, 854 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Börner, M. et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries. J. Power Sources 342, 382–392 (2017).

    Article 
    ADS 

    Google Scholar 

  • Li, S. et al. Constant-rate heating-induced thermal runaway in 18650-type Li-ion cells charged/discharged at 1 °C: effect of undischargeable Li at anode. J. Power Sources 505, 230082 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gabryelczyk, A., Ivanov, S., Bund, A. & Lota, G. Corrosion of aluminium current collector in lithium-ion batteries: a review. J. Energy Storage 43, 103226 (2021).

    Article 

    Google Scholar 

  • Ma, T. et al. Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. J. Phys. Chem. Lett. 8, 1072–1077 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Waldmann, T. et al. Electrochemical, post-mortem, and ARC analysis of Li-ion cell safety in second-life applications. J. Electrochem. Soc. 164, A3154 (2017). This paper pioneeringly demonstrates that the safety of aged cells is strongly correlated with the dominant ageing mechanism.

    Article 
    CAS 

    Google Scholar 

  • Preger, Y., Torres-Castro, L., Rauhala, T. & Jeevarajan, J. Perspective—On the safety of aged lithium-ion batteries. J. Electrochem. Soc. 169, 030507 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, X., Zhu, J. & Sahraei, E. Degradation of battery separators under charge–discharge cycles. RSC Adv. 7, 56099–56107 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, Z. et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 14, 259 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, F.-N. et al. Higher-order polysulfides induced thermal runaway for 1.0 Ah lithium sulfur pouch cells. Particuology 79, 10–17 (2023).

    Article 
    CAS 

    Google Scholar 

  • Xiang, Y. et al. Advanced separators for lithium‐ion and lithium–sulfur batteries: a review of recent progress. ChemSusChem 9, 3023–3039 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roth, E. P., Doughty, D. H. & Pile, D. L. Effects of separator breakdown on abuse response of 18650 Li-ion cells. J. Power Sources 174, 579–583 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sharifi-Asl, S., Lu, J., Amine, K. & Shahbazian-Yassar, R. Oxygen release degradation in Li-ion battery cathode materials: mechanisms and mitigating approaches. Adv. Energy Mater. 9, 1900551 (2019).

    Article 

    Google Scholar 

  • Kaur, G. & Gates, B. D. Review—Surface coatings for cathodes in lithium ion batteries: from crystal structures to electrochemical performance. J. Electrochem. Soc. 169, 043504 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Finegan, D. P. et al. Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells. J. Power Sources 417, 29–41 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Finegan, D. P. et al. Identifying the cause of rupture of Li-ion batteries during thermal runaway. Adv. Sci. 5, 1700369 (2018).

    Article 

    Google Scholar 

  • Walker, W. et al. Decoupling of heat generated from ejected and non-ejected contents of 18650-format lithium-ion cells using statistical methods. J. Power Sources 415, 207–218 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Walker, W. Q. et al. The effect of cell geometry and trigger method on the risks associated with thermal runaway of lithium-ion batteries. J. Power Sources 524, 230645 (2022).

    Article 
    CAS 

    Google Scholar 

  • Finegan, D. P. et al. Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits. Energy Environ. Sci. 10, 1377–1388 (2017).

    Article 
    CAS 

    Google Scholar 

  • Finegan, D. P. et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 6, 6924 (2015). To the best of our knowledge, this paper first demonstrated the use of high-speed synchrotron X-ray computed tomography and radiography, combined with thermal imaging, to monitor internal damage and thermal behaviour during thermal runaway in LIBs.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Progress and challenges in ultrasonic technology for state estimation and defect detection of lithium-ion batteries. Energy Storage Mater. 69, 103430 (2024).

    Article 

    Google Scholar 

  • McGee, T. M., Neath, B., Matthews, S., Ezekoye, O. A. & Haberman, M. R. Ultrasonic inspection of lithium-ion pouch cells subjected to localized thermal abuse. J. Power Sources 583, 233542 (2023).

    Article 
    CAS 

    Google Scholar 

  • McGee, T. M., Neath, B., Matthews, S., Ezekoye, O. A. & Haberman, M. R. Ultrasonic detection of pre-existing thermal abuse in lithium-ion pouch cells. J. Power Sources 595, 234035 (2024).

    Article 
    CAS 

    Google Scholar 

  • Davies, G. et al. State of charge and state of health estimation using electrochemical acoustic time of flight analysis. J. Electrochem. Soc. 164, A2746–A2755 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kim, J.-Y., Jo, J.-H. & Byeon, J.-W. Ultrasonic monitoring performance degradation of lithium ion battery. Microelectron. Reliab. 114, 113859 (2020).

    Article 
    CAS 

    Google Scholar 

  • Robinson, J. B. et al. Spatially resolved ultrasound diagnostics of Li-ion battery electrodes. Phys. Chem. Chem. Phys. 21, 6354–6361 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Finegan, D. P. et al. The Battery Failure Databank: insights from an open-access database of thermal runaway behaviors of Li-ion cells and a resource for benchmarking risks. J. Power Sources 597, 234106 (2024). This paper presents a pioneering battery failure database for understanding the variation in commercial cell behaviours during thermal runaway.

    Article 
    CAS 

    Google Scholar 

  • Masalkovaitė, K., Gasper, P. & Finegan, D. P. Predicting the heat release variability of Li-ion cells under thermal runaway with few or no calorimetry data. Nat. Commun. 15, 8399 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bates, A. et al. A multi-scale framework for advancing battery safety through early calorimetric analysis of materials and components. Electrochem. Soc. Interface 33, 69 (2024). This paper presented a new strategy to bridge battery material and component characterization with safety prediction of large-format cells through targeted experiments and validated modelling.

    Article 
    CAS 

    Google Scholar 

  • Li, W., Zhu, J., Xia, Y., Gorji, M. B. & Wierzbicki, T. Data-driven safety envelope of lithium-ion batteries for electric vehicles. Joule 3, 2703–2715 (2019). To the best of our knowledge, this paper presents the first demonstration of combining numerical data generation with machine learning to predict the mechanical safety of battery systems for EV applications.

    Article 
    CAS 

    Google Scholar 

  • Hendricks, C., Williard, N., Mathew, S. & Pecht, M. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. J. Power Sources 297, 113–120 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Premnath, V., Wang, Y., Wright, N., Khalek, I. & Uribe, S. Detailed characterization of particle emissions from battery fires. Aerosol Sci. Technol. 56, 337–354 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Finegan, D. P. et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study. Phys. Chem. Chem. Phys. 18, 30912–30919 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Franqueville, J. I., Archibald, E. J. & Ezekoye, O. A. Data-driven modeling of downwind toxic gas dispersion in lithium-ion battery failures using computational fluid dynamics. J. Loss Prev. Process Ind. 86, 105201 (2023).

    Article 
    CAS 

    Google Scholar 

  • Lu, G., Nai, J., Luan, D., Tao, X. & Lou, X. W. Surface engineering toward stable lithium metal anodes. Sci. Adv. 9, eadf1550 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, C. et al. Polysulfide-incompatible additive suppresses spatial reaction heterogeneity of Li-S batteries. Joule 8, 3397–3411 (2024).

    Article 
    CAS 

    Google Scholar 

  • Kaur, A. P. et al. Overcharge protection of lithium-ion batteries above 4 V with a perfluorinated phenothiazine derivative. J. Mater. Chem. A 4, 5410–5414 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tranter, T. G. et al. Probing heterogeneity in Li-ion batteries with coupled multiscale models of electrochemistry and thermal transport using tomographic domains. J. Electrochem. Soc. 167, 110538 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hebert, A. & McCalla, E. The role of metal substitutions in the development of Li batteries, part I: cathodes. Mater. Adv. 2, 3474–3518 (2021).

    Article 
    CAS 

    Google Scholar 

  • Song, Y. et al. The significance of mitigating crosstalk in lithium-ion batteries: a review. Energy Environ. Sci. 16, 1943–1963 (2023).

    Article 

    Google Scholar 

  • Hales, A., Marzook, M. W., Bravo Diaz, L., Patel, Y. & Offer, G. The surface cell cooling coefficient: a standard to define heat rejection from lithium ion battery pouch cells. J. Electrochem. Soc. 167, 020524 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xu, C. et al. A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods. Cell Rep. Phys. Sci. 4, 101705 (2023).

    Article 
    CAS 

    Google Scholar 

  • Pereira, D. J., McRay, H. A., Bopte, S. S. & Jalilvand, G. H2O/HF scavenging mechanism in cellulose-based separators for lithium-ion batteries with enhanced cycle life. ACS Appl. Mater. Interfaces 16, 5745–5757 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ostanek, J. K., Li, W., Mukherjee, P. P., Crompton, K. R. & Hacker, C. Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model. Appl. Energy 268, 114972 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yang, S.-J. et al. Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells. eTransportation 18, 100279 (2023). This paper pioneeringly proposes that the dominant exothermic reaction in Ah-level ASSBs may arise from crosstalk between the cathode and the LPSCl solid electrolyte, rather than between the cathode and the lithium metal anode.

    Article 

    Google Scholar 

  • Ruiz, V. et al. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew. Sustain. Energy Rev. 81, 1427–1452 (2018).

    Article 
    CAS 

    Google Scholar 

  • Continue Reading