Advances in very-high-energy astrophysics – CERN Courier

Advances in Very High Energy Astrophysics: The Science Program of the Third Generation IACTs for Exploring Cosmic Gamma Rays, edited by Reshmi Mukherjee and Roberta Zanin, World Scientific

Imaging atmospheric Cherenkov telescopes (IACTs) are designed to detect very-high-energy gamma rays, enabling the study of a range of both galactic and extragalactic gamma-ray sources. By capturing Cherenkov light from gamma-ray-induced air showers, IACTs help trace the origins of cosmic rays and probe fundamental physics, including questions surrounding dark matter and Lorentz invariance. Since the first gamma-ray source detection by the Whipple telescope in 1989, the field has rapidly advanced through instruments like HESS, MAGIC and VERITAS. Building on these successes, the Cherenkov Telescope Array Observatory (CTAO) represents the next generation of IACTs, with greatly improved sensitivity and energy coverage. The northern CTAO site on La Palma is already collecting data, and major infrastructure development is now underway at the southern site in Chile, where telescope construction is set to begin soon.

Considering the looming start to CTAO telescope construction, Advances in Very High Energy Astrophysics, edited by Reshmi Mukherjee of Barnard College and Roberta Zanin, from the University of Barcelona, is very timely. World-leading experts tackle the almost impossible task of summarising the progress made by the third-generation IACTs: HESS, MAGIC and VERITAS.

The range of topics covered is vast, spanning the last 20 years of progress in the areas of IACT instrumentation, data-analysis techniques, all aspects of high-energy astrophysics, cosmic-ray astrophysics and gamma-ray cosmology.  The authors are necessarily selective, so the depth into each sector is limited, but I believe that the essential concepts were properly introduced and the most important highlights captured. The primary focus of the book lies in discussions surrounding gamma-ray astronomy and high-energy physics, cosmic rays and ongoing research into dark matter.

It appears, however, that the individual chapters were all written independently of each other by different authors, leading to some duplications. Source classes and high-energy radiation mechanisms are introduced multiple times, sometimes with different terminology and notation in the different chapters, which could lead to confusion for novices in the field. But though internal coordination could have been improved, a positive aspect of this independence is that each chapter is self-contained and can be read on its own. I recommend the book to emerging researchers looking for a broad overview of this rapidly evolving field.

Continue Reading