A deep learning and large language hybrid workflow for omics interpretation

  • Stefely, J. A. et al. Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling. Nat. Biotechnol. 34, 1191–1197 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhodes, D. R. & Chinnaiyan, A. M. Integrative analysis of the cancer transcriptome. Nat. Genet. 37, S31–S37 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chung, M. et al. Best practices on the differential expression analysis of multi-species RNA-seq. Genome Biol. 22, 121 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamada, R. et al. Interpretation of omics data analyses. J. Hum. Genet. 66, 93–102 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Subramanian, I. et al. Multi-omics data integration, interpretation, and its application. Bioinform. Biol. Insights 14, 1177932219899051 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shu, T. et al. Plasma proteomics identify biomarkers and pathogenesis of COVID-19. Immunity 53, 1108–1122.e5 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shui, K. et al. Small-sample learning reveals propionylation in determining global protein homeostasis. Nat. Commun. 14, 2813 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, Y. et al. PIM1 promotes hepatic conversion by suppressing reprogramming-induced ferroptosis and cell cycle arrest. Nat. Commun. 13, 5237 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirschberg, J. & Manning, C. D. Advances in natural language processing. Science 349, 261–266 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • ChatGPT: Optimizing Language Models for Dialogue (OpenAI, 2022).

  • Christiano, P. F. et al. Deep reinforcement learning from human preferences. In Proc. 31st International Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) 4302–4310 (Curran, 2017).

  • Brown, T. B. et al. Language models are few-shot learners. In Proc. 34th Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 1–25 (2020).

  • Wei, J. S. et al. Chain-of-thought prompting elicits reasoning in large language models. In Proc. 36th International Conference on Neural Information Processing Systems (eds Koyejo, S. et al.) 24824–24837 (Curran, 2022).

  • Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17, 1–382 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ulgherait, M. et al. Circadian autophagy drives iTRF-mediated longevity. Nature 598, 353–358 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skrott, Z. et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552, 194–199 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, M.-M. et al. Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies. Cancer Discov. 8, 53 (2022).

    CAS 

    Google Scholar 

  • Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368, 845–850 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Diamantopoulou, Z. et al. The metastatic spread of breast cancer accelerates during sleep. Nature 607, 156–162 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Obradović, M. M. S. et al. Glucocorticoids promote breast cancer metastasis. Nature 567, 540–544 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hirota, T. & King, B. H. Autism spectrum disorder: a review. JAMA 329, 157–168 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, F. et al. A pan-cancer single-cell panorama of human natural killer cells. Cell 186, 4235–4251.e20 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Velmeshev, D. et al. Single-cell analysis of prenatal and postnatal human cortical development. Science 382, eadf0834 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, W. et al. THANATOS: an integrative data resource of proteins and post-translational modifications in the regulation of autophagy. Autophagy 14, 296–310 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, Z. et al. Model-based analysis uncovers mutations altering autophagy selectivity in human cancer. Nat. Commun. 12, 3258 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos, A. et al. A knowledge graph to interpret clinical proteomics data. Nat. Biotechnol. 40, 692–702 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. et al. Large graph models: a perspective. Preprint at https://doi.org/10.48550/arXiv.2308.14522 (2023).

  • Yu, H. et al. Annotation transfer between genomes: protein–protein interologs and protein–DNA regulogs. Genome Res. 14, 1107–1118 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyu, Y., Huang, X. & Zhang, Z. Revisiting 2D convolutional neural networks for graph-based applications. IEEE Trans. Pattern Anal. Mach. Intell. 45, 6909–6922 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Díez, J., Walter, D., Muñoz-Pinedo, C. & Gabaldón, T. DeathBase: a database on structure, evolution and function of proteins involved in apoptosis and other forms of cell death. Cell Death Differ. 17, 735–736 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Homma, K., Suzuki, K. & Sugawara, H. The Autophagy Database: an all-inclusive information resource on autophagy that provides nourishment for research. Nucleic Acids Res. 39, D986–D990 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moussay, E. et al. The acquisition of resistance to TNFα in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray. Autophagy 7, 760–770 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, J. & Li, Y. H. miRDeathDB: a database bridging microRNAs and the programmed cell death. Cell Death Differ. 19, 1571 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arntzen, M., Bull, V. H. & Thiede, B. Cell death proteomics database: consolidating proteomics data on cell death. J. Proteome Res. 12, 2206–2213 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wanichthanarak, K., Cvijovic, M., Molt, A. & Petranovic, D. yApoptosis: yeast apoptosis database. Database 2013, bat068 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Türei, D. et al. Autophagy Regulatory Network—a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy. Autophagy 11, 155–165 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, D. et al. ncRDeathDB: a comprehensive bioinformatics resource for deciphering network organization of the ncRNA-mediated cell death system. Autophagy 11, 1917–1926 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, N. N. et al. HAMdb: a database of human autophagy modulators with specific pathway and disease information. J. Cheminform. 10, 34 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, K. et al. Autophagy and Tumor Database: ATdb, a novel database connecting autophagy and tumor. Database https://doi.org/10.1093/database/baaa052 (2020).

  • Zhou, N. & Bao, J. FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis–disease associations. Database https://doi.org/10.1093/database/baaa021 (2020).

  • Zhang, L. et al. MCDB: a comprehensive curated mitotic catastrophe database for retrieval, protein sequence alignment, and target prediction. Acta Pharm. Sin. B 11, 3092–3104 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y. J., Sheng, D. F., Zhou, Z. H. & Wu, Y. F. AI hallucination: towards a comprehensive classification of distorted information in artificial intelligence-generated content. Hum. Soc. Sci. Commun. https://doi.org/10.1057/S41599-024-03811-X (2024).

  • Bang, Y. et al. A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity. Preprint at https://arxiv.org/abs/2302.04023 (2023).

  • Zhu, W., Swaminathan, G. & Plowey, E. D. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes. Autophagy 10, 1622–1636 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, W., Jia, M., Feng, Y. & Cheng, X. Lactate is a bridge linking glycolysis and autophagy through lactylation. Autophagy 19, 3240–3241 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujioka, Y. et al. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol. 21, 513–521 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schreiber, A. et al. Multilayered regulation of autophagy by the Atg1 kinase orchestrates spatial and temporal control of autophagosome formation. Mol. Cell 81, 5066–5081.e10 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, Y. et al. Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation. Autophagy 12, 648–658 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cowley, M. J. et al. PINA v2.0: mining interactome modules. Nucleic Acids Res. 40, D862–D865 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Das, J. & Yu, H. HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Syst. Biol. 6, 92 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Razick, S., Magklaras, G. & Donaldson, I. M. iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 9, 405 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47, D529–D541 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Calderone, A., Castagnoli, L. & Cesareni, G. mentha: a resource for browsing integrated protein-interaction networks. Nat. Methods 10, 690–691 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kotlyar, M., Pastrello, C., Malik, Z. & Jurisica, I. IID 2018 update: context-specific physical protein–protein interactions in human, model organisms and domesticated species. Nucleic Acids Res. 47, D581–D589 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, T. et al. A scored human protein–protein interaction network to catalyze genomic interpretation. Nat. Methods 14, 61–64 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Galluzzi, L. et al. Molecular definitions of autophagy and related processes. EMBO J. 36, 1811–1836 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yi, C. et al. Formation of a Snf1-Mec1-Atg1 module on mitochondria governs energy deprivation-induced autophagy by regulating mitochondrial respiration. Dev. Cell 41, 59–71.e54 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yi, C., Tong, J. J. & Yu, L. Mitochondria: the hub of energy deprivation-induced autophagy. Autophagy 14, 1084–1085 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Clement, S. T., Dixit, G. & Dohlman, H. G. Regulation of yeast G protein signaling by the kinases that activate the AMPK homolog Snf1. Sci. Signal. 6, ra78 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mok, J. et al. Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci. Signal. 3, ra12 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asano, S. et al. Direct phosphorylation and activation of a Nim1-related kinase Gin4 by Elm1 in budding yeast. J. Biol. Chem. 281, 27090–27098 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, Y. et al. The disulfiram/copper complex induces autophagic cell death in colorectal cancer by targeting ULK1. Front. Pharmacol. 12, 752825 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jivan, R. et al. Disulfiram with or without metformin inhibits oesophageal squamous cell carcinoma in vivo. Cancer Lett. 417, 1–10 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, X. et al. Suppressing autophagy enhances disulfiram/copper-induced apoptosis in non-small cell lung cancer. Eur. J. Pharmacol. 827, 1–12 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, S. et al. Inhibition of cathepsin L alleviates the microglia-mediated neuroinflammatory responses through caspase-8 and NF-κB pathways. Neurobiol. Aging 62, 159–167 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, H. et al. Oxidized DJ-1 activates the p-IKK/NF-κB/Beclin1 pathway by binding PTEN to induce autophagy and exacerbate myocardial ischemia-reperfusion injury. Eur. J. Pharmacol. 971, 176496 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kenig, S., Frangež, R., Pucer, A. & Lah, T. Inhibition of cathepsin L lowers the apoptotic threshold of glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7. Apoptosis 16, 671–682 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, M. M. et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target. Ther. https://doi.org/10.1038/s41392-021-00558-8 (2021).

  • Sudhan, D. R., Pampo, C., Rice, L. & Siemann, D. W. Cathepsin L inactivation leads to multimodal inhibition of prostate cancer cell dissemination in a preclinical bone metastasis model. Int. J. Cancer 138, 2665–2677 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richard, V. et al. The double agents in liquid biopsy: promoter and informant biomarkers of early metastases in breast cancer. Mol. Cancer 21, 95 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, J. et al. ATP11B inhibits breast cancer metastasis in a mouse model by suppressing externalization of nonapoptotic phosphatidylserine. J. Clin. Invest. https://doi.org/10.1172/jci149473 (2022).

  • Jiang, C. C. et al. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct. Target. Ther. 7, 229 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bheda, A., Creek, K. E. & Pirisi, L. Loss of p53 induces epidermal growth factor receptor promoter activity in normal human keratinocytes. Oncogene 27, 4315–4323 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linder, M. et al. EGFR is required for FOS-dependent bone tumor development via RSK2/CREB signaling. EMBO Mol. Med. https://doi.org/10.15252/emmm.201809408 (2018).

  • Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, F. et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat. Mach. Intell. 4, 852 (2022).

    Article 

    Google Scholar 

  • Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui, H. T. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470–1480 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, A. et al. Causality for large language models. Preprint at https://arxiv.org/abs/2410.15319 (2024).

  • Lee, S. et al. Reasoning abilities of large language models: in-depth analysis on the abstraction and reasoning corpus. Preprint at https://arxiv.org/abs/2403.11793 (2024).

  • Kipf, T. N. & Welling, M. Variational graph auto-encoders. Preprint at https://arxiv.org/abs/1611.07308 (2016).

  • Wu, Z. H. et al. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Miao, Z., Humphreys, B. D., McMahon, A. P. & Kim, J. Multi-omics integration in the age of million single-cell data. Nat. Rev. Nephrol. 17, 710–724 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, A. et al. Integrative methods and practical challenges for single-cell multi-omics. Trends Biotechnol. 38, 1007–1022 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. DeepPhagy: a deep learning framework for quantitatively measuring autophagy activity in Saccharomyces cerevisiae. Autophagy 16, 626–640 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, D., Zhang, C., Peng, D. & Xue, Y. Transcriptome of Saccharomyces cerevisiae during glucose starvation. Datasets. SRA https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA912308 (2025).

  • Tang, D., Zhang, C., Peng, D. & Xue, Y. The proteome and phosphoproteome of Saccharomyces cerevisiae during glucose starvation. Datasets. iProX https://www.iprox.cn//page/project.html?id=IPX0005607000 (2025).

  • Tang, D., Zhang, C., Peng, D. & Xue, Y. LyMOI: large hybrid models for omics interpretation. Source code. GitHub https://github.com/BioCUCKOO/LyMOI (2025).

  • Continue Reading