Biosynthesis and function of magnetic organelles in magnetotactic bacteria

  • Bellini, S. Ulteriori Studi SuiBatteri Magnetosensibili” (University of Pavia, 1963).

  • Blakemore, R. P. Magnetotactic bacteria. Science 190, 377–379 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balkwill, D., Maratea, D. & Blakemore, R. P. Ultrastructure of a magnetotactic spirillum. J. Bacteriol. 141, 1399–1408 (1980).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greening, C. & Lithgow, T. Formation and function of bacterial organelles. Nat. Rev. Microbiol. 18, 677–689 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goswami, P. et al. Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications. npj Biofilms Microbiomes 8, 43 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, W. et al. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J. 12, 1508–1519 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. Bacterial community structure and novel species of magnetotactic bacteria in sediments from a seamount in the Mariana Volcanic Arc. Sci. Rep. 7, 17964 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flies, C. B. et al. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol. Ecol. 52, 185–195 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dufour, S. C. et al. Magnetosome-containing bacteria living as symbionts of bivalves. ISME J. 8, 2453–2462 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monteil, C. L. et al. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat. Microbiol. 4, 1088–1095 (2019). This seminal study discovers a symbiosis between protists and magnetosome-forming bacteria.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amor, M., Tharaud, M., Gélabert, A. & Komeili, A. Single-cell determination of iron content in magnetotactic bacteria. Implications for the iron biogeochemical cycle. Environ. Microbiol. 22, 823–831 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, W., Bazylinski, D. A., Xiao, T., Wu, L.-F. & Pan, Y. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ. Microbiol. 16, 2646–2658 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schulz-Vogt, H. N. et al. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. ISME J. 13, 1198–1208 (2019). This work describes long-distance phosphate shuttling by MTB and solves a long-standing geochemical conundrum.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kopp, R. E. & Kirschvink, J. L. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Sci. Rev. 86, 42–61 (2008).

    Article 

    Google Scholar 

  • Shen, J. et al. Renaissance for magnetotactic bacteria in astrobiology. ISME J. 17, 1526–1534 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Correa, T., Presciliano, R. & Abreu, F. Why does not nanotechnology go green? Bioprocess simulation and economics for bacterial-origin magnetite nanoparticles. Front. Microbiol. 12, 718232 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schleifer, K. H. et al. The genus Magnetospirillum gen. nov. description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst. Appl. Microbiol. 14, 379–385 (1991).

    Article 

    Google Scholar 

  • Matsunaga, T., Sakaguchi, T. & Tadokoro, F. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl. Microbiol. Biotechnol. 35, 651–655 (1991).

    Article 
    CAS 

    Google Scholar 

  • Kopp, R. E., Nash, C. Z., Kirschvink, J. L. & Leadbetter, J. R. A possible magnetite/maghemite electrochemical battery in the magnetotactic bacteria. Eos Trans. AGU 85, GP34A-06 (2004).

    Google Scholar 

  • Guo, F. F. et al. Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. Environ. Microbiol. 14, 1722–1729 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frankel, R., Williams, T. & Bazylinski, D. in Magnetoreception and Magnetosomes in Bacteria (ed. Schüler, D.) 1–24 (Springer, 2007).

  • Popp, F., Armitage, J. P. & Schüler, D. Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway. Nat. Commun. 5, 5398 (2014). This study addresses the molecular mechanisms of bacterial magneto–aerotaxis, revealing that magnetic swimming polarity and aerotaxis are linked closely.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Murat, D. et al. Opposite and coordinated rotation of amphitrichous flagella governs oriented swimming and reversals in a magnetotactic spirillum. J. Bacteriol. 197, 3275–3282 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lefèvre, C. T. et al. Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophys. J. 107, 527–538 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S.-D. et al. Swimming behaviour and magnetotaxis function of the marine bacterium strain MO-1. Environ. Microbiol. Rep. 6, 14–20 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Frankel, R. Magnetic guidance of organisms. Annu. Rev. Biophys. Bioeng. 13, 85–103 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pfeiffer, D., Herz, J., Schmiedel, J., Popp, F. & Schüler, D. Spatiotemporal organization of chemotaxis pathways in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 87, e02229-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herz, J. et al. A two‐protein chemoreceptor complex regulates oxygen thresholds in bacterial magneto‐aerotaxis. Adv. Sci. https://doi.org/10.1002/advs.202417315 (2025).

  • Glassmeier, K.-H. & Vogt, J. Magnetic polarity transitions and biospheric effects. Space Sci. Rev. 155, 387–410 (2010).

    Article 
    CAS 

    Google Scholar 

  • Lin, W., Kirschvink, J. L., Paterson, G. A., Bazylinski, D. A. & Pan, Y. On the origin of microbial magnetoreception. Natl Sci. Rev. 7, 472–479 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kolinko, I. et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotech. 9, 193–197 (2014).

    Article 
    CAS 

    Google Scholar 

  • Schübbe, S. et al. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J. Bacteriol. 185, 5779–5790 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monteil, C. L. et al. Repeated horizontal gene transfers triggered parallel evolution of magnetotaxis in two evolutionary divergent lineages of magnetotactic bacteria. ISME J. 14, 1783–1794 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uebe, R., Schüler, D., Jogler, C. & Wiegand, S. Reevaluation of the complete genome sequence of Magnetospirillum gryphiswaldense MSR-1 with single-molecule real-time sequencing data. Genome Announc. 6, e00309–e00318 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zwiener, T. et al. Identification and elimination of genomic regions irrelevant for magnetosome biosynthesis by large-scale deletion in Magnetospirillum gryphiswaldense. BMC Microbiol. 21, 65 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lohße, A. et al. Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PLoS ONE 6, e25561 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCausland, H. C., Wetmore, K. M., Arkin, A. P. & Komeili, A. Global analysis of biomineralization genes in Magnetospirillum magneticum AMB-1. mSystems 7, e01037–21 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murat, D., Quinlan, A., Vali, H. & Komeili, A. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl Acad. Sci. USA 107, 5593–5598 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silva, K. T. et al. Genome-wide identification of essential and auxiliary gene sets for magnetosome biosynthesis in Magnetospirillum gryphiswaldense. mSystems 5, e00565-20 (2020). Together with McCausland et al. (2022), this work describes genome-wide transposon-mutagenesis studies that confirm the importance of MGC and identify further metabolic genes supporting magnetosome biosynthesis.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lohße, A. et al. Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense. J. Bacteriol. 196, 2658–2669 (2014). Together with Lohße et al. (2011) and Murat et al. (2010), this work assigns putative functions in each biogenesis step to many magnetosome genes.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dziuba, M. V. et al. The complex transcriptional landscape of magnetosome gene clusters in Magnetospirillum gryphiswaldense. mSystems 6, e00893-21 (2021). This study uncovers the intricate transcription of MGC that control magnetosome biosynthesis.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rioux, J.-B. et al. A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PLoS ONE 5, e9151 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wan, J. et al. McaA and McaB control the dynamic positioning of a bacterial magnetic organelle. Nat. Commun. 13, 5652 (2022). This study reports the discovery of proteins causing gapped magnetosome chains that explains distinct magnetosome chain phenotypes in different magnetospirilla.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Juhas, M. et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 33, 376–393 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ullrich, S., Kube, M., Schübbe, S., Reinhardt, R. & Schüler, D. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J. Bacteriol. 187, 7176–7184 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jogler, C. et al. Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ. Microbiol. 11, 1267–1277 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fukuda, Y., Okamura, Y., Takeyama, H. & Matsunaga, T. Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett. 580, 801–812 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jogler, C. et al. Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl. Environ. Microbiol. 75, 3972–3979 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raschdorf, O. et al. Genetic and ultrastructural analysis reveals the key players and initial steps of bacterial magnetosome membrane biogenesis. PLoS Genet. 12, e1006101 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cornejo, E., Subramanian, P., Li, Z., Jensen, G. J. & Komeili, A. Dynamic remodeling of the magnetosome membrane is triggered by the initiation of biomineralization. mBio 7, 15 (2016). Together with Raschdorf et al. (2016), this work provides an analysis on the process and determinants for magnetosome membrane formation.

    Article 

    Google Scholar 

  • Grünberg, K. et al. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 70, 1040–1050 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gorby, Y. A., Beveridge, T. J. & Blakemore, R. Characterization of the bacterial magnetosome membrane. J. Bacteriol. 170, 834–841 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uebe, R. et al. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol. Microbiol. 82, 818–835 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uebe, R. et al. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Mol. Microbiol. 107, 542–557 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wan, J. et al. A protease-mediated switch regulates the growth of magnetosome organelles in Magnetospirillum magneticum. Proc. Natl Acad. Sci. USA 119, e2111745119 (2022). This study identifies a key regulatory mechanism for magnetosome membrane growth, highlighting the role of the protease MamE and its substrate MamD.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeytuni, N. et al. Cation diffusion facilitators transport initiation and regulation is mediated by cation induced conformational changes of the cytoplasmic domain. PLoS ONE 9, e92141 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeytuni, N. et al. Bacterial magnetosome biomineralization — a novel platform to study molecular mechanisms of human CDF-related type-II diabetes. PLoS ONE 9, e97154 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grünberg, K., Wawer, C., Tebo, B. M. & Schüler, D. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67, 4573–4582 (2001). Together with Grünberg et al. (2004), this work has identified magnetosome-associated proteins that led to the discovery of biosynthetic magnetosome gene clusters.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raschdorf, O. et al. A quantitative assessment of the membrane-integral sub-proteome of a bacterial magnetic organelle. J. Proteom. 172, 88–99 (2018).

    Article 

    Google Scholar 

  • Komeili, A., Li, Z., Newman, D. K. & Jensen, G. J. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242–245 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanaka, M. et al. Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6, 5234–5247 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nudelman, H. & Zarivach, R. Structure prediction of magnetosome-associated proteins. Front. Microbiol. 5, 9 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamamoto, D. et al. Visualization and structural analysis of the bacterial magnetic organelle magnetosome using atomic force microscopy. Proc. Natl Acad. Sci. USA 107, 9382–9387 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeytuni, N. et al. Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc. Natl Acad. Sci. USA 108, E480–E487 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murat, D. et al. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol. Microbiol. 85, 684–699 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paulus, A. et al. MamF-like proteins are distant Tic20 homologs involved in organelle assembly in bacteria. Nat. Commun. 15, 10657 (2024). This paper reports the discovery that MamF-like proteins are homologous to a plastid translocase in plants and are involved in targeting of proteins to the magnetosome membrane.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kikuchi, S. et al. Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339, 571–574 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arakaki, A. et al. Comparative subcellular localization analysis of magnetosome proteins reveals a unique localization behavior of Mms6 protein onto magnetite crystals. J. Bacteriol. 198, 2794–2802 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bickley, C. D., Wan, J. & Komeili, A. Intrinsic and extrinsic determinants of conditional localization of Mms6 to magnetosome organelles in Magnetospirillum magneticum AMB-1. J. Bacteriol. 206, e0000824 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Singappuli-Arachchige, D. et al. The magnetosome protein, Mms6 from Magnetospirillum magneticum strain AMB-1, is a lipid-activated ferric reductase. Int. J. Mol. Sci. 23, 10305 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, A., Schmitz, M., Aichmayer, B., Fratzl, P. & Faivre, D. Structural purity of magnetite nanoparticles in magnetotactic bacteria. J. R. Soc. Interface 8, 1011–1018 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faivre, D. & Zuddas, P. An integrated approach for determining the origin of magnetite nanoparticles. Earth Planet. Sci. Lett. 243, 53–60 (2006).

    Article 
    CAS 

    Google Scholar 

  • Lenders, J. J. M. et al. Combinatorial evolution of biomimetic magnetite nanoparticles. Adv. Funct. Mater. 27, 1604863 (2017).

    Article 

    Google Scholar 

  • Faivre, D. & Schüler, D. Magnetotactic bacteria and magnetosomes. Chem. Rev. 108, 4875–4898 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amor, M. et al. Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: an iron isotope study. Geochim. Cosmochim. Acta 232, 225–243 (2018).

    Article 
    CAS 

    Google Scholar 

  • Amor, M. et al. Magnetotactic bacteria accumulate a large pool of iron distinct from their magnetite crystals. Appl. Environ. Microbiol. 86, e01278-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jogler, C. et al. Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum. Proc. Natl Acad. Sci. USA 108, 1134–1139 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Calugay, R. J. et al. Catechol siderophore excretion by magnetotactic bacterium Magnetospirillum magneticum AMB-1. J. Biosci. Bioeng. 101, 445–447 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uebe, R. et al. Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J. Bacteriol. 192, 4192–4204 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amor, M. et al. Defining local chemical conditions in magnetosomes of magnetotactic bacteria. J. Phys. Chem. B 126, 2677–2687 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, M., Wei, J., Lei, Y. & Ying, L. A novel ferric reductase purified from Magnetospirillum gryphiswaldense MSR-1. Curr. Microbiol. 55, 71–75 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, C. et al. Two bifunctional enzymes with ferric reduction ability play complementary roles during magnetosome synthesis in Magnetospirillum gryphiswaldense MSR-1. J. Bacteriol. 195, 876–885 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lefèvre, C. T. et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ. Microbiol. 15, 2712–2735 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Rong, C. et al. Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res. Microbiol. 159, 530–536 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zwiener, T. et al. Towards a ‘chassis’ for bacterial magnetosome biosynthesis: genome streamlining of Magnetospirillum gryphiswaldense by multiple deletions. Microb. Cell Fact. 20, 621 (2021).

    Article 

    Google Scholar 

  • Rong, C. et al. FeoB2 functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1. J. Bacteriol. 194, 3972–3976 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. et al. Physiological characteristics of Magnetospirillum gryphiswaldense MSR-1 that control cell growth under high-iron and low-oxygen conditions. Sci. Rep. 7, 2800 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faivre, D., Böttger, L. H., Matzanke, B. F. & Schüler, D. Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew. Chem. Int. Ed. 46, 8495–8499 (2007).

    Article 
    CAS 

    Google Scholar 

  • Frankel, R., Papaefthymiou, G. C., Blakemore, R. P. & O’Brian, W. Fe3O4 precipitation in magnetotactic bacteria. Biochim. Biophys. Acta 763, 147–159 (1983).

    Article 
    CAS 

    Google Scholar 

  • Fdez-Gubieda, M. L. et al. Magnetite biomineralization in Magnetospirillum gryphiswaldense: time-resolved magnetic and structural studies. ACS Nano 7, 3297–3305 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uebe, R. et al. Bacterioferritin of Magnetospirillum gryphiswaldense is a heterotetraeicosameric complex composed of functionally distinct subunits but is not involved in magnetite biomineralization. mBio 10, e02795-18 (2019). This study demonstrates that magnetite biomineralization is independent of ferritin-derived ferrihydrite precursors.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chevrier, D. M. et al. Synchrotron-based nano-X-ray absorption near-edge structure revealing intracellular heterogeneity of iron species in magnetotactic bacteria. Small Sci. 2, 2100089 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berny, C. et al. A method for producing highly pure magnetosomes in large quantity for medical applications using Magnetospirillum gryphiswaldense MSR-1 magnetotactic bacteria amplified in minimal growth media. Front. Bioeng. Biotechnol. 8, 403 (2020).

    Article 

    Google Scholar 

  • Raschdorf, O., Müller, F. D., Pósfai, M., Plitzko, J. M. & Schüler, D. The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol. Microbiol. 89, 872–886 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barber-Zucker, S. et al. Disease-homologous mutation in the cation diffusion facilitator protein MamM causes single-domain structural loss and signifies its importance. Sci. Rep. 6, 31933 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hochella, M. F. et al. Nanominerals, mineral nanoparticles, and Earth systems. Science 319, 1631–1635 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eguchi, Y., Fukumori, Y. & Taoka, A. Measuring magnetosomal pH of the magnetotactic bacterium Magnetospirillum magneticum AMB-1 using pH-sensitive fluorescent proteins. Biosci. Biotechnol. Biochem. 82, 1243–1251 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amor, M. et al. Magnetochrome-catalyzed oxidation of ferrous iron by MamP enables magnetite crystal growth in the magnetotactic bacterium AMB-1. Proc. Natl Acad. Sci. USA 121, e2410245121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siponen, M. I. et al. Structural insight into magnetochrome-mediated magnetite biomineralization. Nature 502, 681–684 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, S. R. et al. Genetic and biochemical investigations of the role of MamP in redox control of iron biomineralization in Magnetospirillum magneticum. Proc. Natl Acad. Sci. USA 112, 3904–3909 (2015). Together with Siponen et al. (2013), this work describes the structure and function of a novel magnetochrome domain for magnetite biomineralization.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quinlan, A., Murat, D., Vali, H. & Komeili, A. The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol. Microbiol. 80, 1075–1087 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. Cytochrome cd1 nitrite reductase NirS is involved in anaerobic magnetite biomineralization in Magnetospirillum gryphiswaldense and requires NirN for proper d1 heme assembly. J. Bacteriol. 195, 4297–4309 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y., Raschdorf, O., Silva, K. T. & Schüler, D. The terminal oxidase cbb3 functions in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol. 196, 2552–2562 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y., Katzmann, E., Borg, S. & Schüler, D. The periplasmic nitrate reductase Nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol. 194, 4847–4856 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katzmann, E., Scheffel, A., Gruska, M., Plitzko, J. M. & Schüler, D. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol. Microbiol. 77, 208–224 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abreu, F. et al. Cryo-electron tomography of the magnetotactic vibrio Magnetovibrio blakemorei: insights into the biomineralization of prismatic magnetosomes. J. Struct. Biol. 181, 162–168 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hershey, D. M. et al. MamO is a repurposed serine protease that promotes magnetite biomineralization through direct transition metal binding in magnetotactic bacteria. PLoS Biol. 14, e1002402 (2016). This study reveals that the magnetosome protein MamO is a pseudoprotease that facilitates MamE-dependent proteolysis.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lohße, A. et al. Overproduction of magnetosomes by genomic amplification of biosynthetic gene clusters in a magnetotactic bacterium. Appl. Environ. Microbiol. 82, 3032–3041 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, H. V. et al. A protein-protein interaction in magnetosomes: TPR protein MamA interacts with an Mms6 protein. Biochem. Biophys. Rep. 7, 39–44 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rawlings, A. E. et al. Ferrous iron binding key to Mms6 magnetite biomineralisation. A mechanistic study to understand magnetite formation using pH titration and NMR spectroscopy. Chemistry 22, 7885–7894 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arakaki, A., Webbs, J. & Matsunaga, T. A novel protein tightly bound to bacterial magnetite particles in Magnetospirillum magnetotacticum strain AMB-1. J. Biol. Chem. 278, 8745–8750 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Toro-Nahuelpan, M. et al. MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nat. Microbiol. 4, 1978–1989 (2019). This paper reveals how a straight magnetosome chain is fitted into the helical cell body of magnetospirilla by a novel curvature-sensing and filament-forming magnetoskeletal protein.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Toro-Nahuelpan, M. et al. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol. 14, 88 (2016). This study shows that magnetosome chains are precisely midcell-positioned, split and equipartitioned during cell division by the dynamics of the magnetoskeletal MamK protein.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katzmann, E. et al. Magnetosome chains are recruited to cellular division sites and split by asymmetric septation. Mol. Microbiol. 82, 1316–1329 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Scheffel, A. et al. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110–114 (2006). Together with Komeili et al. (2006), this study reports the discovery of a novel cytoskeleton that organizes magnetosome chains in MTB.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scheffel, A. & Schüler, D. The acidic repetitive domain of the Magnetospirillum gryphiswaldense MamJ protein displays hypervariability but is not required for magnetosome chain assembly. J. Bacteriol. 189, 6437–6446 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Staniland, S. S., Moisescu, C. & Benning, L. G. Cell division in magnetotactic bacteria splits magnetosome chain in half. J. Basic Microbiol. 50, 392–396 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Löwe, J., He, S., Scheres, S. H. W. & Savva, C. G. X-ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization. Proc. Natl Acad. Sci. USA 113, 13396–13401 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ozyamak, E., Kollman, J., Agard, D. A. & Komeili, A. The bacterial actin MamK: in vitro assembly behavior and filament architecture. J. Biol. Chem. 288, 4265–4277 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Draper, O. et al. MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ. Mol. Microbiol. 82, 342–354 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pradel, N., Santini, C., Bernadac, A., Fukumori, Y. & Wu, L. Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc. Natl Acad. Sci. USA 103, 17485–17489 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfeiffer, D. & Schüler, D. Quantifying the benefit of a dedicated “magnetoskeleton” in bacterial magnetotaxis by live-cell motility tracking and soft agar swimming assay. Appl. Environ. Microbiol. 86, e01976-19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abreu, N. et al. Interplay between two bacterial actin homologs, MamK and MamK-Like, is required for the alignment of magnetosome organelles in Magnetospirillum magneticum AMB-1. J. Bacteriol. 196, 3111–3121 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sakaguchi, S., Taoka, A. & Fukumori, Y. Analysis of magnetotactic behavior by swimming assay. Biosci. Biotechnol. Biochem. 77, 940–947 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Taoka, A. et al. Tethered magnets are the key to magnetotaxis: direct observations of Magnetospirillum magneticum AMB-1 show that MamK distributes magnetosome organelles equally to daughter cells. mBio 8, e00679-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfeiffer, D. et al. A bacterial cytolinker couples positioning of magnetic organelles to cell shape control. Proc. Natl Acad. Sci. USA 117, 32086–32097 (2020). This study reports the discovery of a novel cytoskeletal protein linking the generic cell shape-determining cytoskeleton with the magnetoskeleton.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Toro-Nahuelpan, M., Plitzko, J. M., Schüler, D. & Pfeiffer, D. In vivo architecture of the polar organizing protein Z (PopZ) meshwork in the Alphaproteobacteria Magnetospirillum gryphiswaldense and Caulobacter crescentus. J. Mol. Biol. 434, 167423 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Toro-Nahuelpan, M. et al. A gradient-forming MipZ protein mediating the control of cell division in the magnetotactic bacterium Magnetospirillum gryphiswaldense. Mol. Microbiol. 112, 1423–1439 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pfeiffer, D., Toro-Nahuelpan, M., Bramkamp, M., Plitzko, J. M. & Schüler, D. The polar organizing protein PopZ is fundamental for proper cell division and segregation of cellular content in Magnetospirillum gryphiswaldense. mBio 10, e02716–e02718 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, F. D. et al. The FtsZ-like protein FtsZm of Magnetospirillum gryphiswaldense likely interacts with its generic homolog and is required for biomineralization under nitrate deprivation. J. Bacteriol. 196, 650–659 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding, Y. et al. Deletion of the ftsZ-like gene results in the production of superparamagnetic magnetite magnetosomes in Magnetospirillum gryphiswaldense. J. Bacteriol. 192, 1097–1105 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Transcriptome analysis reveals physiological characteristics required for magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. Environ. Microbiol. Rep. 8, 371–381 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Riese, C. N. et al. The transcriptomic landscape of Magnetospirillum gryphiswaldense during magnetosome biomineralization. BMC Genom. 23, 699 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yamazaki, T., Oyanagi, H., Fujiwara, T. & Fukumori, Y. Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum — a novel cytochrome cd1 with Fe(II) nitrite oxidoreductase activity. Eur. J. Biochem. 233, 665–671 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dziuba, M. V., Müller, F.-D., Pósfai, M. & Schüler, D. Exploring the host range for genetic transfer of magnetic organelle biosynthesis. Nat. Nanotech. 19, 115–123 (2024). Expanding the heterologous MGC expression described by Kolinko et al. (2014), this study demonstrates transplantation of magnetosome formation to a range of foreign bacteria and explores the host’s requirement for magnetosome biosynthesis.

    Article 
    CAS 

    Google Scholar 

  • Heising, S. & Schink, B. Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiology 144, 2263–2269 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dziuba, M. V. et al. Silent gene clusters encode magnetic organelle biosynthesis in a non-magnetotactic phototrophic bacterium. ISME J. 17, 326–339 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Q. et al. Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps control the iron/oxygen balance, oxidative stress tolerance, and magnetosome formation. Appl. Environ. Microbiol. 81, 8044–8053 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olszewska-Widdrat, A., Schiro, G., Reichel, V. E. & Faivre, D. Reducing conditions favor magnetosome production in Magnetospirillum magneticum AMB-1. Front. Microbiol. 10, 582 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riese, C. N. et al. An automated oxystat fermentation regime for microoxic cultivation of Magnetospirillum gryphiswaldense. Microb. Cell Fact. 19, 206 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heyen, U. & Schüler, D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 61, 536–544 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moisescu, C., Ardelean, I. I. & Benning, L. G. The effect and role of environmental conditions on magnetosome synthesis. Front. Microbiol. 5, 49 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. The oxygen sensor MgFnr controls magnetite biomineralization by regulation of denitrification in Magnetospirillum gryphiswaldense. BMC Microbiol. 14, 153 (2014). Together with Li et al. (2013), Li et al. (2014) and Li et al. (2012), this work unravels the contribution of cellular respiration to magnetosomal redox balance.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. The disruption of an OxyR-like protein impairs intracellular magnetite biomineralization in Magnetospirillum gryphiswaldense MSR-1. Front. Microbiol. 8, 208 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Niu, W. et al. OxyR controls magnetosome formation by regulating magnetosome island (MAI) genes, iron metabolism, and redox state. Free Radic. Biol. Med. 161, 272–282 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pang, B., Zheng, H., Ma, S., Tian, J. & Wen, Y. Nitric oxide sensor NsrR is the key direct regulator of magnetosome formation and nitrogen metabolism in Magnetospirillum. Nucleic Acids Res. 52, 2924–2941 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yukl, E. T., Elbaz, M. A., Nakano, M. M. & Moënne-Loccoz, P. Transcription factor NsrR from Bacillus subtilis senses nitric oxide with a 4Fe–4S cluster. Biochemistry 47, 13084–13092 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Awal, R. P. et al. Experimental analysis of diverse actin-like proteins from various magnetotactic bacteria by functional expression in Magnetospirillum gryphiswaldense. mBio 14, e0164923 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Awal, R. P., Lefevre, C. T. & Schüler, D. Functional expression of foreign magnetosome genes in the alphaproteobacterium Magnetospirillum gryphiswaldense. mBio 14, e0328222 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Dziuba, M. V., Zwiener, T., Uebe, R. & Schüler, D. Single-step transfer of biosynthetic operons endows a non-magnetotactic Magnetospirillum strain from wetland with magnetosome biosynthesis. Environ. Microbiol. 22, 1603–1618 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ji, R. et al. Linking morphology, genome, and metabolic activity of uncultured magnetotactic Nitrospirota at the single-cell level. Microbiome 12, 158 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uzun, M. et al. Detection of interphylum transfers of the magnetosome gene cluster in magnetotactic bacteria. Front. Microbiol. 13, 945734 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uzun, M. et al. Recovery and genome reconstruction of novel magnetotactic Elusimicrobiota from bog soil. ISME J. 17, 204–214 (2023). This study reports the magnetic enrichment and genomic reconstruction of extremely rare uncultivated MTB, revealing a putatively fermentative metabolism.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, W. & Pan, Y. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. Environ. Microbiol. Rep. 7, 237–242 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kolinko, S. et al. Clone libraries and single cell genome amplification reveal extended diversity of uncultivated magnetotactic bacteria from marine and freshwater environments. Environ. Microbiol. 15, 1290–1301 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schaible, G. A. et al. Multicellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells. PLoS Biol. 22, e3002638 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, W. et al. Expanding magnetic organelle biogenesis in the domain Bacteria. Microbiome 8, 152 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lins, U., McCartney, M. R., Farina, M., Frankel, R. B. & Buseck, P. R. Habits of magnetosome crystals in coccoid magnetotactic bacteria. Appl. Environ. Microbiol. 71, 4902–4905 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Biomineralization and magnetism of uncultured magnetotactic coccus strain THC‐1 with non‐chained magnetosomal magnetite nanoparticles. J. Geophys. Res. Solid Earth 125, e2020JB02085 (2020).

    Article 

    Google Scholar 

  • Lefèvre, C. T. et al. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science 334, 1720–1723 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Lin, W. et al. Genomic insights into the uncultured genus ‘Candidatus Magnetobacterium’ in the phylum Nitrospirae. ISME J. 8, 2463–2477 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahn-Lee, L. et al. A genetic strategy for probing the functional diversity of magnetosome formation. PLoS Genet. 11, e1004811 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pohl, A. et al. Magnetite-binding proteins from the magnetotactic bacterium Desulfamplus magnetovallimortis BW-1. Nanoscale 13, 20396–20400 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Monteil, C. L. et al. Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environ. Microbiol. 20, 4415–4430 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lefèvre, C. T. et al. Monophyletic origin of magnetotaxis and the first magnetosomes. Environ. Microbiol. 15, 2267–2274 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Lin, W. et al. Origin of microbial biomineralization and magnetotaxis during the Archean. Proc. Natl Acad. Sci. USA 114, 2171–2176 (2017). This study, together with Lin et al. (2018), reveals a broader taxonomic distribution of magnetosome biosynthesis and suggests an early evolutionary origin of magnetotaxis.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strbak, O. & Dobrota, D. Archean iron-based metabolism analysis and the photoferrotrophy-driven hypothesis of microbial magnetotaxis origin. Geomicrobiol. J. 36, 278–290 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kirschvink, J. L., Walker, M. M. & Diebel, C. E. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 11, 462–467 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bellinger, M. R. et al. Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proc. Natl Acad. Sci. USA 119, e2108655119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monteil, C. L., Vallenet, D., Schüler, D. & Lefevre, C. T. Magnetosome proteins belong to universal protein families involved in many cell processes. Proc. Natl Acad. Sci. USA 119, e2208648119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Vincentiis, S. et al. Induction of axonal outgrowth in mouse hippocampal neurons via bacterial magnetosomes. Int. J. Mol. Sci. 22, 4126 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roda, A. et al. Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab Chip 13, 4881–4889 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fdez-Gubieda, M. L. et al. Magnetotactic bacteria for cancer therapy. J. Appl. Phys. 128, 70902 (2020).

    Article 
    CAS 

    Google Scholar 

  • Alphandéry, E. Applications of magnetotactic bacteria and magnetosome for cancer treatment: a review emphasizing on practical and mechanistic aspects. Drug Discov. Today 25, 1444–1452 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gwisai, T. et al. Magnetic torque-driven living microrobots for increased tumor infiltration. Sci. Robot. 7, eabo0665 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Awal, R. P. et al. Sesbanimide R, a novel cytotoxic polyketide produced by magnetotactic bacteria. mBio 12, e00591-21 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mannucci, S. et al. Magnetosomes extracted from Magnetospirillum gryphiswaldense as theranostic agents in an experimental model of glioblastoma. Contrast Media Mol. Imaging https://doi.org/10.1155/2018/2198703 (2018).

  • Nguyen, T. N., Chebbi, I., Le Fèvre, R., Guyot, F. & Alphandéry, E. Non-pyrogenic highly pure magnetosomes for efficient hyperthermia treatment of prostate cancer. Appl. Microbiol. Biotechnol. 107, 1159–1176 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Taukulis, R. et al. Magnetic iron oxide nanoparticles as MRI contrast agents — a comprehensive physical and theoretical study. Magnetohydrodynamics 51, 721–748 (2015).

    Article 

    Google Scholar 

  • Kraupner, A. et al. Bacterial magnetosomes — nature’s powerful contribution to MPI tracer research. Nanoscale 9, 5788–5793 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chades, T. et al. Set-up of a pharmaceutical cell bank of Magnetospirillum gryphiswaldense MSR1 magnetotactic bacteria producing highly pure magnetosomes. Microb. Cell Fact. 23, 70 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernández-Castané, A. et al. A scalable biomanufacturing platform for bacterial magnetosomes. Food Bioprod. Process. 144, 110–122 (2024).

    Article 

    Google Scholar 

  • Mandawala, C. et al. Biocompatible and stable magnetosome minerals coated with poly-l-lysine, citric acid, oleic acid, and carboxy-methyl-dextran for application in the magnetic hyperthermia treatment of tumors. J. Mater. Chem. B 5, 7644–7660 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mickoleit, F. et al. Assessing cytotoxicity, endotoxicity, and blood compatibility of nanoscale iron oxide magnetosomes for biomedical applications. ACS Appl. Nano Mater. 7, 1278–1288 (2024).

    Article 
    CAS 

    Google Scholar 

  • Rosenfeldt, S. et al. Towards standardized purification of bacterial magnetic nanoparticles for future in vivo applications. Acta Biomater. 120, 293–303 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoshino, T. et al. Magnetosome membrane engineering to improve G protein-coupled receptor activities in the magnetosome display system. Metab. Eng. 67, 125–132 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Borg, S., Hofmann, J., Pollithy, A., Lang, C. & Schüler, D. New vectors for chromosomal integration enable high-level constitutive or inducible magnetosome expression of fusion proteins in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 80, 2609–2616 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mickoleit, F. & Schüler, D. Generation of multifunctional magnetic nanoparticles with amplified catalytic activities by genetic expression of enzyme arrays on bacterial magnetosomes. Adv. Biosys. 2, 1700109 (2018).

    Article 

    Google Scholar 

  • Honda, T., Tanaka, T. & Yoshino, T. Stoichiometrically controlled immobilization of multiple enzymes on magnetic nanoparticles by the magnetosome display system for efficient cellulose hydrolysis. Biomacromolecules 16, 3863–3868 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Borg, S. et al. An intracellular nanotrap redirects proteins and organelles in live bacteria. mBio 6, e02117-14 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mickoleit, F., Lanzloth, C. & Schüler, D. A versatile toolkit for controllable and highly selective multifunctionalization of bacterial magnetic nanoparticles. Small 16, e1906922 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Mickoleit, F. et al. Precise assembly of genetically functionalized magnetosomes and tobacco mosaic virus particles generates a magnetic biocomposite. ACS Appl. Mater. Interfaces 10, 37898–37910 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mickoleit, F. et al. A versatile magnetic nanoplatform for plug-and-play functionalization: genetically programmable cargo loading to bacterial magnetosomes by SpyCatcher “click biology”. ACS Nano 18, 27974–27987 (2024). This comprehensive study demonstrates the power of click biology for straightforward, in vitro functionalization of magnetosome particles for various applications.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading