Bridging fair-aware artificial intelligence and co-creation for equitable mental healthcare

  • Bohr, A. & Memarzadeh, K. in Artificial Intelligence in Healthcare (eds Bohr, A. & Memarzadeh, K.) 25–60 (Academic, 2020).

  • Dwyer, D. B., Falkai, P. & Koutsouleris, N. Machine learning approaches for clinical psychology and psychiatry. Annu. Rev. Clin. Psychol. 14, 91–118 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Lattie, E. G., Stiles-Shields, C. & Graham, A. K. An overview of and recommendations for more accessible digital mental health services. Nat. Rev. Psychol. 1, 87–100 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torous, J. & Blease, C. Generative artificial intelligence in mental health care: potential benefits and current challenges. World Psychiatry 23, 1–2 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graham, S. et al. Artificial intelligence for mental health and mental illnesses: an overview. Curr. Psychiatry Rep. 21, 116 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Habicht, J. et al. Closing the accessibility gap to mental health treatment with a personalized self-referral chatbot. Nat. Med. 30, 595–602 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Jacobson, N. C. & Bhattacharya, S. Digital biomarkers of anxiety disorder symptom changes: Personalized deep learning models using smartphone sensors accurately predict anxiety symptoms from ecological momentary assessments. Behav. Res. Ther. 149, 104013 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Johnson, A. E. et al. Utilizing artificial intelligence to enhance health equity among patients with heart failure. Heart Fail. Clin. 18, 259–273 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olawade, D. B. et al. Enhancing mental health with artificial intelligence: current trends and future prospects. J. Med. Surg. Public Health 3, 100099 (2024).

    Article 

    Google Scholar 

  • Anderson-Lewis, C., Darville, G., Mercado, R. E., Howell, S. & Di Maggio, S. mHealth technology use and implications in historically underserved and minority populations in the United States: systematic literature review. JMIR mHealth uHealth 6, e8383 (2018).

    Article 

    Google Scholar 

  • McGuire, T. G. & Miranda, J. New evidence regarding racial and ethnic disparities in mental health: policy implications. Health Aff. 27, 393–403 (2008).

    Article 

    Google Scholar 

  • Belenguer, L. AI bias: exploring discriminatory algorithmic decision-making models and the application of possible machine-centric solutions adapted from the pharmaceutical industry. AI Ethics 2, 771–787 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chouldechova, A. & Roth, A. A group of industry, academic, and government experts convene in Philadelphia to explore the roots of algorithmic bias. Commun. ACM 63, 82–89 (2020).

    Article 

    Google Scholar 

  • Fulmer, R., Davis, T., Costello, C. & Joerin, A. The ethics of psychological artificial intelligence: Clinical considerations. Couns. Values 66, 131–144 (2021).

    Article 

    Google Scholar 

  • Timmons, A. C. et al. A call to action on assessing and mitigating bias in artificial intelligence applications for mental health. Persp. Psychol. Sci. 18, 1062–1096 (2023).

    Article 

    Google Scholar 

  • Chen, F., Wang, L., Hong, J., Jiang, J. & Zhou, L. Unmasking bias in artificial intelligence: a systematic review of bias detection and mitigation strategies in electronic health record-based models. J. Am. Med. Inform. Assoc. 31, 1172–1183 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noor, P. Can we trust AI not to further embed racial bias and prejudice? BMJ 368, m363 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Adler, D. A. et al. Measuring algorithmic bias to analyze the reliability of AI tools that predict depression risk using smartphone sensed-behavioral data. npj Ment. Health Res. 3, 17 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mizock, L. & Harkins, D. Diagnostic bias and conduct disorder: improving culturally sensitive diagnosis. Child. Youth Serv. 32, 243–253 (2011).

    Article 

    Google Scholar 

  • Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G. & Chin, M. H. Ensuring fairness in machine learning to advance health equity. Ann. Intern. Med. 169, 866–872 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cowgill, B. et al. Biased programmers? Or biased data? A field experiment in operationalizing AI ethics. In Proc. 21st ACM Conf. Economics and Computation 679–681 (ACM, 2020).

  • Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Chen, R. J. et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat. Biomed. Eng. 7, 719–742 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A. A survey on bias and fairness in machine learning. ACM Comput. Surv. 54, 115 (2021).

    Google Scholar 

  • Pagano, T. P. et al. Bias and unfairness in machine learning models: a systematic review on datasets, tools, fairness metrics, and identification and mitigation methods. Big Data Cogn. Comput. 7, 15 (2023).

    Article 

    Google Scholar 

  • Kamishima, T., Akaho, S., Asoh, H. & Sakuma, J. Model-based and actual independence for fairness-aware classification. Data Min. Knowl. Discov. 32, 258–286 (2018).

    Article 

    Google Scholar 

  • Nilsen, P. et al. Accelerating the impact of artificial intelligence in mental healthcare through implementation science. Implement. Res. Pract. 3, 26334895221112033 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nazer, L. H. et al. Bias in artificial intelligence algorithms and recommendations for mitigation. PLoS Digit. Health 2, e0000278 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Brien, J., Fossey, E. & Palmer, V. J. A scoping review of the use of co-design methods with culturally and linguistically diverse communities to improve or adapt mental health services. Health Soc. Care Comm. 29, 1–17 (2021).

    Article 

    Google Scholar 

  • Brotherdale, R., Berry, K., Branitsky, A. & Bucci, S. Co-producing digital mental health interventions: a systematic review. Digit. Health https://doi.org/10.1177/20552076241239172 (2024).

  • Halvorsrud, K. et al. Identifying evidence of effectiveness in the co-creation of research: a systematic review and meta-analysis of the international healthcare literature. J. Publ. Health 43, 197–208 (2021).

    Article 

    Google Scholar 

  • Åkerblom, K. B. & Ness, O. Peer workers in co-production and co-creation in mental health and substance use services: a scoping review. Adm. Policy Ment. Health 50, 296–316 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Elwan, M. Co-creation and recovery in mental health services: a lived experience perspective. Ir. J. Psychol. Med. 7, 1–3 (2024).

    Article 

    Google Scholar 

  • Kuipers, S. J., Cramm, J. M. & Nieboer, A. P. The importance of patient-centered care and co-creation of care for satisfaction with care and physical and social well-being of patients with multi-morbidity in the primary care setting. BMC Health Serv. Res. 19, 13 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Powell, N., Dalton, H., Lawrence-Bourne, J. & Perkins, D. Co-creating community wellbeing initiatives: what is the evidence and how do they work? Int. J. Ment. Health Syst. 18, 28 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soklaridis, S. et al. A balancing act: navigating the nuances of co-production in mental health research. Res. Inv. Engag. 10, 30 (2024).

    Article 

    Google Scholar 

  • Mulvale, G. et al. Co-creating a new charter for equitable and inclusive co-creation: insights from an international forum of academic and lived experience experts. BMJ Open 14, e078950 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sliep, Y., Tankink, M. & Bubenzer, F. Co-creation as a methodology to integrate mental health and psychosocial support and peacebuilding. Interv. J. Ment. Health Psychosoc. Support Conflict-Affected Areas 21, 89–95 (2023).

    Article 

    Google Scholar 

  • Uricchio, W. & Cizek, K. Co-creating with AI. Minn. Rev. 2023, 118–131 (2023).

    Article 

    Google Scholar 

  • McCaffrey, L. et al. Adult co-creators’ emotional and psychological experiences of the co-creation process: a Health CASCADE scoping review protocol. Syst. Rev. 13, 231 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Israilov, S. & Cho, H. J. How co-creation helped address hierarchy, overwhelmed patients, and conflicts of interest in health care quality and safety. AMA J. Ethics 19, 1139–1145 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Laurisz, N., Ćwiklicki, M., Żabiński, M., Canestrino, R. & Magliocca, P. Co-creation in health 4.0 as a new solution for a new era. Healthcare 11, 363 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tuhiwai Smith, L. Decolonizing Methodologies: Research And Indigenous Peoples (Bloomsbury, 2012).

  • Fadus, M. C. et al. Unconscious bias and the diagnosis of disruptive behavior disorders and ADHD in African American and Hispanic youth. Acad. Psychiatry 44, 95–102 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Topol, E. J. Welcoming new guidelines for AI clinical research. Nat. Med. 26, 1318–1320 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Yang, J., Soltan, A. A. S., Eyre, D. W., Yang, Y. & Clifton, D. A. An adversarial training framework for mitigating algorithmic biases in clinical machine learning. npj Digit. Med. 6, 55 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berk, R., Heidari, H., Jabbari, S., Kearns, M. & Roth, A. Fairness in criminal justice risk assessments: the state of the art. Sociol. Meth. Res. 50, 3–44 (2021).

    Article 

    Google Scholar 

  • Alvarez, J. M. et al. Policy advice and best practices on bias and fairness in AI. Ethics Inf. Technol. 26, 31 (2024).

    Article 

    Google Scholar 

  • Ferrara, E. Fairness and bias in artificial intelligence: a brief survey of sources, impacts, and mitigation strategies. Sci. 6, 3 (2024).

    Article 

    Google Scholar 

  • Ferrara, C., Sellitto, G., Ferrucci, F., Palomba, F. & De Lucia, A. Fairness-aware machine learning engineering: how far are we? Emp. Softw. Eng. 29, 9 (2024).

    Article 

    Google Scholar 

  • Vucinich, S. & Zhu, Q. The current state and challenges of fairness in federated learning. IEEE Access 11, 80903–80914 (2023).

    Article 

    Google Scholar 

  • Liu, M., Meng, Q., Yu, G. & Zhang, Z.-H. Fairness as a robust utilitarianism. Prod. Op. Manag. 34, 563–574 (2025).

    Article 

    Google Scholar 

  • Wenar, L. in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford University, 2021).

  • Bevan Jones, R. et al. Practitioner review: co-design of digital mental health technologies with children and young people. J. Child. Psychol. Psychiatry 61, 928–940 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Dugstad, J., Eide, T., Nilsen, E. R. & Eide, H. Towards successful digital transformation through co-creation: a longitudinal study of a four-year implementation of digital monitoring technology in residential care for persons with dementia. BMC Health Serv. Res. 19, 366 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grindell, C., Coates, E., Croot, L. & O’Cathain, A. The use of co-production, co-design and co-creation to mobilise knowledge in the management of health conditions: a systematic review. BMC Health Serv. Res. 22, 877 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ito-Jaeger, S., Perez Vallejos, E., Logathasan, S., Curran, T. & Crawford, P. Young people’s trust in cocreated web-based resources to promote mental health literacy: focus group study. JMIR Ment. Health 10, e38346 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Porche, M. V., Folk, J. B., Tolou-Shams, M. & Fortuna, L. R. Researchers’ perspectives on digital mental health intervention co-design with marginalized community stakeholder youth and families. Front. Psychiatry 13, 867460 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider, M. L. et al. Individual and organizational outcomes of engaging peers in the cocreation of digital mental health interventions. Psychol. Serv. https://doi.org/10.1037/ser0000889 (2024).

  • Thabrew, H., Fleming, T., Hetrick, S. & Merry, S. Co-design of eHealth interventions with children and young people. Front. Psychiatry 9, 481 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batalden, M. et al. Coproduction of healthcare service. BMJ Qual. Saf. 25, 509–517 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Fusco, F., Marsilio, M. & Guglielmetti, C. Co-creation in healthcare: framing the outcomes and their determinants. J. Serv. Manag. 34, 1–26 (2023).

    Article 

    Google Scholar 

  • Norton, M. J. Coproduction and mental health service provision: a protocol for a scoping review. BMJ Open 12, e058428 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braun, V. & Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101 (2006).

    Article 

    Google Scholar 

  • Duara, R., Chowdhury, D., Dey, R., Goswami, S. & Madill, A. Using cocreated visually informed community mental health education in low- and middle-income countries: a case study of youth substance misuse in Assam, India. Health Expect. 25, 1930–1944 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bruen, C., Brugha, R., Kageni, A. & Wafula, F. A concept in flux: questioning accountability in the context of global health cooperation. Glob. Health 10, 73 (2014).

    Article 

    Google Scholar 

  • Greenhalgh, T., Jackson, C., Shaw, S. & Janamian, T. Achieving research impact through co-creation in community-based health services: literature review and case study. Milbank Q. 94, 392–429 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perna, A., O’Toole, T., Baraldi, E. & Gregori, G. L. The value co-creation journey: a longitudinal process unfolding in a network through collaboration. J. Bus. Ind. Mark. 37, 182–196 (2022).

    Article 

    Google Scholar 

  • Zicari, R. V. et al. Co-design of a trustworthy AI system in healthcare: deep learning based skin lesion classifier. Front. Hum. Dyn. 3, 688152 (2021).

    Article 

    Google Scholar 

  • Crotty, M. J. The Foundations of Social Research: Meaning and Perspective in the Research Process (Sage, 1998).

  • Phillips, D. C. & Burbules, N. C. Postpositivism and Educational Research (Bloomsbury, 2000).

  • Lincoln, Y. S. & Guba, E. G. Naturalistic Inquiry (Sage, 1985).

  • Schwandt, T. A. in Handbook of Qualitative Research (eds Denzin, N. K. & Lincoln, Y. S.) 189–213 (Sage, 2000).

  • Kincheloe, J. L. & Mclaren, P. in Key Works in Critical Pedagogy (eds Hayes, K., Steinberg, S. R. & Tobin, K.) 285–326 (SensePublishers, 2011).

  • Veldmeijer, L. et al. Design for mental health: can design promote human-centred diagnostics? Des. Health 7, 5–23 (2023).

    Google Scholar 

  • Heron, J. & Reason, P. A participatory inquiry paradigm. Qual. Inq. 3, 274–294 (1997).

    Article 

    Google Scholar 

  • Denzin, N. K. & Lincoln, Y. S. (eds) The SAGE Handbook of Qualitative Research (Sage, 2017).

  • Buda, T. S. et al. Foundations for fairness in digital health apps. Front. Digital Health 4, 943514 (2022).

    Article 

    Google Scholar 

  • Morgan, P. & Cogan, N. A. Using artificial intelligence to address mental health inequalities: co-creating machine learning algorithms with key stakeholders and citizen engagement. J. Public. Ment. Health https://doi.org/10.1108/JPMH-07-2024-0095 (2024).

  • Yang, J. et al. Mitigating machine learning bias between high income and low–middle income countries for enhanced model fairness and generalizability. Sci. Rep. 14, 13318 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Konttila, J., Korkiakoski, V., Kurikka, J., Pääkkönen, J. & Kyngäs, H. Co-creation: an approach to developing digitalized mental healthcare. Psych. Fenn. 52, 138–146 (2021).

    Google Scholar 

  • Kohlgrüber, M., Maldonado-Mariscal, K. & Schröder, A. Mutual learning in innovation and co-creation processes: integrating technological and social innovation. Front. Educ. 6, 498661 (2021).

    Article 

    Google Scholar 

  • Hardt, M., Price, E., Price, E. & Srebro, N. Equality of opportunity in supervised learning. In Advances in Neural Information Processing Systems (eds Lee, D. et al.) Vol. 29, 3323–3331 (Curran Associates, 2016).

  • Brewer, L. C. et al. Fostering African-American improvement in total health (FAITH!): an application of the American Heart Association’s life’s simple 7TM among midwestern African-Americans. J. Racial Ethn. Health Disparities 4, 269–281 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Gupta, M., Gao, J., Aggarwal, C. C. & Han, J. Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26, 2250–2267 (2014).

    Article 

    Google Scholar 

  • Widmer, G. & Kubat, M. Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23, 69–101 (1996).

    Article 

    Google Scholar 

  • Guan, H., Bates, D. & Zhou, L. Keeping medical AI healthy: a review of detection and correction methods for system degradation. Preprint at https://doi.org/10.48550/arXiv.2506.17442 (2025).

  • Gianfrancesco, M. A., Tamang, S., Yazdany, J. & Schmajuk, G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 178, 1544–1547 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alqahtani, F., Winn, A. & Orji, R. Co-designing a mobile app to improve mental health and well-being: focus group study. JMIR Form. Res. 5, e18172 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sarri, G., Forsythe, A., Elvidge, J. & Dawoud, D. Living health technology assessments: how close to living reality? BMJ Evidence-based Med. 28, 369–371 (2023).

    Article 

    Google Scholar 

  • Ni, Y. & Jia, F. A scoping review of AI-driven digital interventions in mental health care: mapping applications across screening, support, monitoring, prevention, and clinical education. Healthcare 13, 1205 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nahum-Shani, I. et al. Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann. Behav. Med. 52, 446–462 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Almirall, D., Nahum-Shani, I., Sherwood, N. E. & Murphy, S. A. Introduction to SMART designs for the development of adaptive interventions: with application to weight loss research. Transl. Behav. Med. 4, 260–274 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carpenter, S. M., Menictas, M., Nahum-Shani, I., Wetter, D. W. & Murphy, S. A. Developments in mobile health just-in-time adaptive interventions for addiction science. Curr. Addict. Rep. 7, 280–290 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hardeman, W., Houghton, J., Lane, K., Jones, A. & Naughton, F. A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. Int. J. Behav. Nutr. Phys. Act. 16, 31 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kidwell, K. M. & Almirall, D. Sequential, multiple assignment, randomized trial designs. JAMA 329, 336–337 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Juarascio, A. S. et al. Just-in-time adaptive interventions: a novel approach for enhancing skill utilization and acquisition in cognitive behavioral therapy for eating disorders. Int. J. Eat. Disord. 51, 826–830 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lorenzoni, G. et al. Use of sequential multiple assignment randomized trials (SMARTs) in oncology: systematic review of published studies. Br. J. Cancer 128, 1177–1188 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Nahum-Shani, I. et al. Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann. Behav. Med. 52, 446–462 (2016).

    Article 

    Google Scholar 

  • Perski, O. et al. Technology-mediated just-in-time adaptive interventions (JITAIs) to reduce harmful substance use: a systematic review. Addiction 117, 1220–1241 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Wang, L. & Miller, L. C. Just-in-the-moment adaptive interventions (JITAI): a meta-analytical review. Health Commun. 35, 1531–1544 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Glaz, A. L. et al. Machine learning and natural language processing in mental health: systematic review. J. Med. Internet Res. 23, e15708 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Wal, O. et al. Undesirable biases in NLP: addressing challenges of measurement. J. Artif. Intell. Res. 79, 1–40 (2024).

    Article 

    Google Scholar 

  • Demszky, D. et al. Using large language models in psychology. Nat. Rev. Psychol. 2, 688–701 (2023).

    Google Scholar 

  • Huerta, E. A. et al. FAIR for AI: an interdisciplinary and international community building perspective. Sci. Data 10, 487 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubeis, G. iHealth: the ethics of artificial intelligence and big data in mental healthcare. Internet Interv. 28, 100518 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bajorek, J. P. Voice recognition still has significant race and gender biases. Harvard Business Review https://hbr.org/2019/05/voice-recognition-still-has-significant-race-and-gender-biases (10 May 2019).

  • Koenecke, A. et al. Racial disparities in automated speech recognition. Proc. Natl Acad. Sci. 117, 7684–7689 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schueller, S. M., Hunter, J. F., Figueroa, C. & Aguilera, A. Use of digital mental health for marginalized and underserved populations. Curr. Treat. Options Psychiatry 6, 243–255 (2019).

    Article 

    Google Scholar 

  • Grother, P., Ngan, M. & Hanaoka, K. Face Recognition Vendor Test (FVRT): Part 3, Demographic Effects (National Institute of Standards and Technology, 2019).

  • Milintsevich, K., Sirts, K. & Dias, G. Your model is not predicting depression well and that is why: a case study of PRIMATE dataset. Preprint at https://doi.org/10.48550/arXiv.2403.00438 (2024).

  • Aikens, R. C., Chen, J. H., Baiocchi, M. & Simard, J. F. Feedback loop failure modes in medical diagnosis: how biases can emerge and be reinforced. Med. Decis. Mak. 44, 481–496 (2024).

    Article 

    Google Scholar 

  • Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).

    Article 

    Google Scholar 

  • Kamiran, F. & Calders, T. Data preprocessing techniques for classification without discrimination. Knowl. Inf. Syst. 33, 1–33 (2012).

    Article 

    Google Scholar 

  • Fajemisin, A. O., Maragno, D. & den Hertog, D. Optimization with constraint learning: a framework and survey. Eur. J. Oper. Res. 314, 1–14 (2024).

    Article 

    Google Scholar 

  • Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J. & Weinberger, K. Q. On fairness and calibration. Adv. Neural Inf. Process. Syst. 31, 5684–5693 (2017).

    Google Scholar 

  • Gao, R. & Shah, C. Toward creating a fairer ranking in search engine results. Inf. Process. Manag. 57, 102138 (2020).

    Article 

    Google Scholar 

  • Raghavan, M. The Societal Impacts of Algorithmic Decision-Making (ACM, 2023).

  • Kehrenberg, T., Chen, Z. & Quadrianto, N. Tuning fairness by balancing target labels. Front. Artif. Intell. 3, 33 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, D., Al Mahmud, A. & Liu, W. Design requirements for a digital storytelling application for people with mild cognitive impairment (MCI). Digit. Health 10, 20552076241282237 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsu, Y.-C., Verma, H., Mauri, A., Nourbakhsh, I. & Bozzon, A. Empowering local communities using artificial intelligence. Patterns 3, 100449 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pomeroy–Stevens, A., Goldman, B. & Grattan, K. Participatory systems mapping for municipal prioritization and planning. J. Urban. Health 99, 738–748 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, S. et al. Co-designing generative AI technologies with older adults to support daily tasks. An MIT Exploration of Generative AI https://doi.org/10.21428/e4baedd9.4f2a95fc (2024).

  • Chang, W.-L. & Shao, Y.-C. Co-creating User Journey Map — a systematic approach to exploring users’ day-to-day experience in participatory design workshops. In Proc. Human–Computer Interaction (eds Kurosu, M. & Hashizume, A.) https://doi.org/10.1007/978-3-031-35596-7_1 (Springer Nature, 2023).

  • Listiyandini, R. A. et al. Culturally adapting an internet-delivered mindfulness intervention for Indonesian university students experiencing psychological distress: mixed methods study. JMIR Form. Res. 7, e47126 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, Y., Chen, M., Kao, D., Gao, G. & Chen, X. A. CheXplain: enabling physicians to explore and understand data-driven, AI-enabled medical imaging analysis. In Proc. 2020 CHI Conf. Human Factors in Computing Systems (eds Bernhaupt, R. et al.) https://doi.org/10.1145/3313831.3376807 (ACM, 2020).

  • Cheng, H.-F. et al. Soliciting stakeholders’ fairness notions in child maltreatment predictive systems. In Proc. 2021 CHI Conf. Human Factors in Computing Systems (eds Kitamura, Y. et al.) 390 (ACM, 2021).

  • Bergman, S. et al. STELA: a community-centred approach to norm elicitation for AI alignment. Sci. Rep. 14, 6616 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benda, N. et al. Patient perspectives on AI for mental health care: cross-sectional survey study. JMIR Ment. Health 11, e58462 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suh, J. et al. Toward tailoring just-in-time adaptive intervention systems for workplace stress reduction: exploratory analysis of intervention implementation. JMIR Ment. Health 11, e48974 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orzikulova, A. et al. Time2Stop: adaptive and explainable human–AI loop for smartphone overuse intervention. In Proc. CHI Conf. Human Factors in Computing Systems (Mueller, F. F. et al.) 250 (ACM, 2024).

  • Ospina-Pinillos, L. et al. Co-designing, developing, and testing a mental health platform for young people using a participatory design methodology in Colombia: mixed methods study. JMIR Hum. Factors 12, e66558 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bødker, S., Ehn, P., Sjögren, D. & Sundblad, Y. Co-operative design — perspectives on 20 years with ‘the Scandinavian IT Design Model’. Proc. NordiCHI 2000, 22–24 (2000).

    Google Scholar 

  • Ehn, P. Work-Oriented Design of Computer Artifacts (Arbetslivscentrum, 1988).

  • Brown, T. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation (Harper Business, 2019).

  • Norman, D. A. The Design of Everyday Things (MIT Press, 2013).

  • Bate, P. & Robert, G. Bringing User Experience to Healthcare Improvement: the Concepts, Methods and Practices of Experience-Based Design (CRC Press, 2023).

  • Sanders, E. B.-N. & Stappers, P. J. Co-creation and the new landscapes of design. CoDesign 4, 5–18 (2008).

    Article 

    Google Scholar 

  • Loeffler, E., Power, G., Bovaird, T. & Hine-Hughes, F. Co-production of Health and Wellbeing in Scotland (Governance International, 2013).

  • Ostrom, E. Crossing the great divide: coproduction, synergy, and development. World Dev. 24, 1073–1087 (1996).

    Article 

    Google Scholar 

  • Wallerstein, N. & Duran, B. Community-based participatory research contributions to intervention research: the intersection of science and practice to improve health equity. Am. J. Publ. Health 100, S40–S46 (2010).

    Article 

    Google Scholar 

  • Colliga Apps Corp. A just-in-time adaptive intervention for child and family mental health. clinicaltrials.gov https://clinicaltrials.gov/study/NCT06443918 (2024).

  • Continue Reading