Woehrer, A., Bauchet, L. & Barnholtz-Sloan, J. S. Glioblastoma survival: Has it improved? Evidence from population-based studies. Curr. Opin. Neurol. 27, 666–674. https://doi.org/10.1097/wco.0000000000000144 (2014).
Kan, L. K. et al. Potential biomarkers and challenges in glioma diagnosis, therapy and prognosis. BMJ Neurol. Open 2, e000069. https://doi.org/10.1136/bmjno-2020-000069 (2020).
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. https://doi.org/10.1056/NEJMoa043330 (2005).
Friedman, H. S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27, 4733–4740. https://doi.org/10.1200/jco.2008.19.8721 (2009).
Kreisl, T. N. et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27, 740–745. https://doi.org/10.1200/jco.2008.16.3055 (2009).
Cohen, M. H., Shen, Y. L., Keegan, P. & Pazdur, R. FDA drug approval summary: Bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14, 1131–1138. https://doi.org/10.1634/theoncologist.2009-0121 (2009).
Ferrara, N., Hillan, K. J., Gerber, H.-P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400. https://doi.org/10.1038/nrd1381 (2004).
Chinot, O. L. et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 709–722. https://doi.org/10.1056/NEJMoa1308345 (2014).
Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708. https://doi.org/10.1056/NEJMoa1308573 (2014).
Schmainda, K. M. et al. Value of dynamic contrast perfusion MRI to predict early response to bevacizumab in newly diagnosed glioblastoma: Results from ACRIN 6686 multicenter trial. Neuro Oncol. 23, 314–323. https://doi.org/10.1093/neuonc/noaa167 (2021).
Xu, L. et al. COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Sci. Transl. Med. 6, 242ra284-242ra284 (2014).
Macarulla, T. et al. Atezolizumab plus chemotherapy with or without bevacizumab in advanced biliary tract cancer: Clinical and biomarker data from the randomized phase II IMbrave151 trial. J. Clin. Oncol. 43, 545–557 (2024).
Loureiro, L. V. M. et al. The immunohistochemical landscape of the VEGF family and its receptors in glioblastomas. Surg. Exp. Pathol. 3, 1–8 (2020).
Jin, K., Qian, C., Lin, J. & Liu, B. Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells. Front. Oncol. 13, 1099811. https://doi.org/10.3389/fonc.2023.1099811 (2023).
Xu, L. & Croix, B. S. Improving VEGF-targeted therapies through inhibition of COX-2/PGE2 signaling. Mol. Cell Oncol. 1, e969154. https://doi.org/10.4161/23723548.2014.969154 (2014).
Shono, T., Tofilon, P. J., Bruner, J. M., Owolabi, O. & Lang, F. F. Cyclooxygenase-2 expression in human gliomas: Prognostic significance and molecular correlations. Cancer Res. 61, 4375–4381 (2001).
Zhang, F., Chu, J. & Wang, F. Expression and clinical significance of cyclooxygenase 2 and survivin in human gliomas. Oncol. Lett. 14, 1303–1308. https://doi.org/10.3892/ol.2017.6281 (2017).
Wang, X. et al. Co-expression of COX-2 and 5-LO in primary glioblastoma is associated with poor prognosis. J. Neurooncol. 125, 277–285. https://doi.org/10.1007/s11060-015-1919-6 (2015).
Hicklin, D. J. & Ellis, L. M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011–1027. https://doi.org/10.1200/jco.2005.06.081 (2005).
Qiu, J., Shi, Z. & Jiang, J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov. Today 22, 148–156. https://doi.org/10.1016/j.drudis.2016.09.017 (2017).
Lu-Emerson, C. et al. Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J. Clin. Oncol. 33, 1197–1213. https://doi.org/10.1200/jco.2014.55.9575 (2015).
Motomura, K. et al. Cost of medical care for malignant brain tumors at hospitals in the Japan clinical oncology group brain-tumor study group. Jpn. J. Clin. Oncol. 54, 1123–1131. https://doi.org/10.1093/jjco/hyae116 (2024).
Hashemi Goradel, N., Najafi, M., Salehi, E., Farhood, B. & Mortezaee, K. Cyclooxygenase-2 in cancer: A review. J. Cell Physiol. 234, 5683–5699. https://doi.org/10.1002/jcp.27411 (2019).
Lin, P. C., Lin, Y. J., Lee, C. T., Liu, H. S. & Lee, J. C. Cyclooxygenase-2 expression in the tumor environment is associated with poor prognosis in colorectal cancer patients. Oncol. Lett. 6, 733–739 (2013).
Shi, C. et al. High COX-2 expression contributes to a poor prognosis through the inhibition of chemotherapy-induced senescence in nasopharyngeal carcinoma. Int. J. Oncol. 53, 1138–1148. https://doi.org/10.3892/ijo.2018.4462 (2018).
Kambe, A. et al. The utility of arterial spin labeling imaging for predicting prognosis after a recurrence of high-grade glioma in patients under bevacizumab treatment. J. Neurooncol. 166, 175–183. https://doi.org/10.1007/s11060-023-04550-w (2024).
Lombardi, F. et al. Cyclooxygenase-2 upregulated by temozolomide in glioblastoma cells is shuttled in extracellular vesicles modifying recipient cell phenotype. Front. Oncol. 12, 933746. https://doi.org/10.3389/fonc.2022.933746 (2022).
Lombardi, F. et al. Up-regulation of cyclooxygenase-2 (COX-2) expression by temozolomide (TMZ) in human glioblastoma (GBM) cell lines. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23031545 (2022).
Schmainda, K. M. et al. Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro Oncol. 16, 880–888. https://doi.org/10.1093/neuonc/not216 (2014).
Leu, K. et al. Hypervascular tumor volume estimated by comparison to a large-scale cerebral blood volume radiographic atlas predicts survival in recurrent glioblastoma treated with bevacizumab. Cancer Imaging 14, 31. https://doi.org/10.1186/s40644-014-0031-z (2014).
Kickingereder, P. et al. Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro Oncol. 17, 1139–1147. https://doi.org/10.1093/neuonc/nov028 (2015).
Liu, T. T. et al. Magnetic resonance perfusion image features uncover an angiogenic subgroup of glioblastoma patients with poor survival and better response to antiangiogenic treatment. Neuro Oncol. 19, 997–1007. https://doi.org/10.1093/neuonc/now270 (2017).
Bennett, I. E. et al. Early perfusion MRI predicts survival outcome in patients with recurrent glioblastoma treated with bevacizumab and carboplatin. J. Neurooncol. 131, 321–329. https://doi.org/10.1007/s11060-016-2300-0 (2017).
Schmainda, K. M. et al. Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: Results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro Oncol. 17, 1148–1156. https://doi.org/10.1093/neuonc/nou364 (2015).
Alves, B. et al. High VEGFA expression is associated with improved progression-free survival after bevacizumab treatment in recurrent glioblastoma. Cancers https://doi.org/10.3390/cancers15082196 (2023).
Rawat, C. et al. Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy. Sci. Rep. 10, 2546. https://doi.org/10.1038/s41598-020-59259-x (2020).
Est-Witte, S. E. et al. Non-viral gene delivery of HIF-1α promotes angiogenesis in human adipose-derived stem cells. Acta Biomater. 113, 279–288. https://doi.org/10.1016/j.actbio.2020.06.042 (2020).
Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 28, 1963–1972. https://doi.org/10.1200/jco.2009.26.3541 (2010).