Relationship between preoperative supine radiographs and intraoperative coronal spinal alignment in thoracic adolescent idiopathic scoliosis

  • Westrick, E. R. & Ward, W. T. Adolescent idiopathic scoliosis: 5-Year to 20-Year Evidence-based surgical results. J. Pediatr. Orthop. 31, S61–S68. https://doi.org/10.1097/BPO.0b013e3181fd87d5 (2011).

    Google Scholar 

  • Nam, Y., Choi, K., Jang, J., Kim, K. & Lee, G. Curve progression in adolescent idiopathic scoliosis with Cobb angles between 40 and 50 degrees at the late stage of skeletal growth: a minimum 5-year follow-up study. J. Clin. Med. 14 (15), 5272 (2025).

    Google Scholar 

  • Miyanji, F. et al. A detailed analysis of the Lenke classification in surgical decision-making for adolescent idiopathic scoliosis. Spine Deform. 8 (1), 41–48 (2020).

    Google Scholar 

  • Ilharreborde, B. et al. Hybrid constructs for tridimensional correction of the thoracic spine in adolescent idiopathic scoliosis: A comparative analysis of universal clamps versus hooks. Spine 35, 306–314. https://doi.org/10.1097/BRS.0b013e3181b7c7c4 (2010).

    Google Scholar 

  • Cheung, K. M. C. & Luk, K. D. K. Prediction of correction of scoliosis with use of the fulcrum bending Radiograph*. J. Bone Joint Surg. 79, 1144–1150. https://doi.org/10.2106/00004623-199708000-00005 (1997).

    Google Scholar 

  • Vedantam, R., Lenke, L. G., Bridwell, K. H. & Linville, D. L. Comparison of push-prone and lateral-bending radiographs for predicting postoperative coronal alignment in thoracolumbar and lumbar scoliotic curves. Spine 25, 76. https://doi.org/10.1097/00007632-200001010-00014 (2000).

  • Klepps, S. J., Lenke, L. G., Bridwell, K. H., Bassett, G. S. & Whorton, J. Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine 26, E74–E79. https://doi.org/10.1097/00007632-200103010-00002 (2001).

    Google Scholar 

  • Hamzaoglu, A. et al. Assessment of curve flexibility in adolescent idiopathic. Scoliosis: Spine. 30, 1637–1642. https://doi.org/10.1097/01.brs.0000170580.92177.d2 (2005).

    Google Scholar 

  • Lenke classification system of adolescent. Idiopathic scoliosis: treatment recommendations. Str. Course Lect 54, 537–542 (2005).

  • O’Brien, M. F., Kuklo, T. R. & Blanke, K. M. Spinal Deformity Study Group Radiographic Measurement Manual (Medtronic Sofamor Danek, 2005).

  • Watanabe, K. et al. Intraoperative spinal cord monitoring during intraoperative halo-femoral traction in scoliosis surgery. Spine 32, E849–E852. https://doi.org/10.1097/BRS.0b013e318074da84 (2007).

    Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. GPower 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 39 (2), 175–191. https://doi.org/10.3758/BF03193146 (2007).

    Google Scholar 

  • Faro, F. D., Marks, M. C., Pawelek, J. & Newton, P. O. Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic scoliosis. Spine 29, 2284–2289. https://doi.org/10.1097/01.brs.0000142224.46796.a7 (2004).

    Google Scholar 

  • Ilharreborde, B. et al. Angle measurement reproducibility using EOSThree-Dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine 36, E1306–E1313. https://doi.org/10.1097/BRS.0b013e3182293548 (2011).

    Google Scholar 

  • Vidal, C., Ilharreborde, B., Azoulay, R., Sebag, G. & Mazda, K. Reliability of cervical lordosis and global sagittal spinal balance measurements in adolescent idiopathic scoliosis. Eur. Spine J. 22, 1362–1367. https://doi.org/10.1007/s00586-013-2752-2 (2013).

    Google Scholar 

  • Potter, B. K. et al. Reliability of End, Neutral, and stable vertebrae identification in adolescent idiopathic scoliosis. Spine. 30, 1658–1663. https://doi.org/10.1097/01.brs.0000170290.05381.9a (2005).

  • Julien-Marsollier, F. et al. Benefits of a spine team for the surgical management of paediatric scoliosis. Orthop. Traumatology: Surg. Res. 103976. https://doi.org/10.1016/j.otsr.2024.103976 (2024).

  • Harrington, P. R. Technical details in relation to the successful use of instrumentation in scoliosis. Orthop Clin. North. Am (1972).

  • Moe, J. H. Methods of correction and surgical techniques in scoliosis. Orthop Clin. North. Am (1972).

  • Burton, D. C., Asher, M. A. & Lai, S-M. The selection of fusion levels using torsional correction techniques in the surgical treatment of idiopathic scoliosis. Spine 24, 1728. https://doi.org/10.1097/00007632-199908150-00015 (1999).

  • Ilharreborde, B., Sebag, G., Skalli, W. & Mazda, K. Adolescent idiopathic scoliosis treated with posteromedial translation: radiologic evaluation with a 3D low-dose system. Eur. Spine J. 22, 2382–2391. https://doi.org/10.1007/s00586-013-2776-7 (2013).

    Google Scholar 

  • Reames, D. L. et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: A review of the scoliosis research society morbidity and mortality database. Spine 36, 1484–1491. https://doi.org/10.1097/BRS.0b013e3181f3a326 (2011).

    Google Scholar 

  • Yagi, M., Takemitsu, M. & Machida, M. Chest cage angle difference and rotation of main thoracic curve are independent risk factors of postoperative shoulder imbalance in surgically treated patients with adolescent idiopathic scoliosis. Spine 38, E1209–E1215. https://doi.org/10.1097/BRS.0b013e31829e0309 (2013).

    Google Scholar 

  • Sabharwal, S., Apazidis, A., Zhao, C., Hullinger, H. & Vives, M. Comparison of intraoperative supine and postoperative standing radiographs after posterior instrumentation for adolescent idiopathic scoliosis. J. Pediatr. Orthop. B. 20, 389–396. https://doi.org/10.1097/BPB.0b013e328347c2bc (2011).

    Google Scholar 

  • Learch, T. J., Massie, J. B., Pathria, M. N., Ahlgren, B. A. & Garfin, S. R. Assessment of pedicle screw placement utilizing conventional radiography and computed tomography: A proposed systematic approach to improve accuracy of interpretation. Spine 29, 767–773. https://doi.org/10.1097/01.BRS.0000112071.69448.A1 (2004).

    Google Scholar 

  • Cheh, G. et al. The reliability of preoperative supine radiographs to predict the amount of curve flexibility in adolescent idiopathic scoliosis. Spine. 32, 2668–2672. https://doi.org/10.1097/BRS.0b013e31815a5269 (2007).

    Google Scholar 

  • Swany, L. M., Larson, A. N., Buyuk, A. F. & Milbrandt, T. A. Comparison of slot-scanning standing, supine, and fulcrum radiographs for assessment of curve flexibility in adolescent idiopathic scoliosis: a pilot study. Spine Deform. 9, 1355–1362. https://doi.org/10.1007/s43390-021-00349-9 (2021).

    Google Scholar 

  • Ramchandran, S. et al. Impact of supine radiographs to assess curve flexibility in the treatment of adolescent idiopathic scoliosis. Glob. Spine J. 12, 1731–1735. https://doi.org/10.1177/2192568220988271 (2022).

    Google Scholar 

  • Han, S-M. et al. Spinal sagittal alignment and postoperative adding-on in patients with adolescent idiopathic scoliosis after surgery. Orthop. Traumatol. 108, 103352. https://doi.org/10.1016/j.otsr.2022.103352 (2022).

    Google Scholar 

  • Vidal, C., Ilharreborde, B., Queinnec, S. & Mazda, K. Role of intraoperative radiographs in the surgical treatment of adolescent idiopathic scoliosis. J. Pediatr. Orthop. 36, 178–186. https://doi.org/10.1097/BPO.0000000000000428 (2016).

    Google Scholar 

  • Rodrigues, L. M. R. et al. Comparison between different radiographic methods for evaluating the flexibility of scoliosis curves. Acta Ortop. Bras. 22, 78–81. https://doi.org/10.1590/1413-78522014220200844 (2014).

    Google Scholar 

  • Lenke, L. G. et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J. Bone Joint Surg. Am. (2001).

  • Thawrani, D., Agabegi, S. S., Eismann, E., Martin, R. & Sturm, P. F. Accuracy and reliability of drawing central sacral vertical line on scoliosis radiographs in clinical practice. Spine Deformity. 1, 16–20. https://doi.org/10.1016/j.jspd.2012.10.003 (2013).

    Google Scholar 

  • Uneri, A. et al. Intraoperative evaluation of device placement in spine surgery using known-component 3D–2D image registration. Phys. Med. Biol. 62, 3330–3351. https://doi.org/10.1088/1361-6560/aa62c5 (2017).

    Google Scholar 

  • Jeantet, R-E., Simon, A-L., Happiette, A. & Ilharreborde, B. Bivertebral pedicle-supralaminar autostable claw for proximal fixation of magnetic growing rods in early-onset scoliosis. Orthop. Traumatol. 109, 103634. https://doi.org/10.1016/j.otsr.2023.103634 (2023).

    Google Scholar 

  • Luhmann, S. J., Lenke, L. G., Bridwell, K. H. & Schootman, M. Revision surgery after primary spine fusion for idiopathic scoliosis. Spine 34, 2191–2197. https://doi.org/10.1097/BRS.0b013e3181b3515a (2009).

    Google Scholar 

  • Jones, M. et al. A united Kingdom single centre review of the impact of extended waiting times in Early-Onset scoliosis: the effect of a delay to surgical treatment of greater than 12 months. Spine Deformity. 5, 446–447. https://doi.org/10.1016/j.jspd.2017.09.018 (2017).

    Google Scholar 

  • Ohrt-Nissen, S., Luk, K. D. K., Samartzis, D. & Cheung, J. P. Y. Selection of the lowest instrumented vertebra in main thoracic adolescent idiopathic scoliosis: is it safe to fuse shorter than the last touched vertebra? Eur. Spine J. 29, 2018–2024. https://doi.org/10.1007/s00586-020-06398-4 (2020).

    Google Scholar 

  • Compagnon, R. et al. Side bending radiographs and lowest instrumented vertebra in adolescent idiopathic scoliosis: A French quality-of-care study. Orthop. Traumatol. 108, 103350. https://doi.org/10.1016/j.otsr.2022.103350 (2022).

    Google Scholar 

  • Iida, T. et al. Performance of forward roll maneuvers following corrective spinal fusion for idiopathic scoliosis patients. Orthop. Traumatol. 107, 103034. https://doi.org/10.1016/j.otsr.2021.103034 (2021).

    Google Scholar 

  • Dang, N. R., Moreau, M. J., Hill, D. L., Mahood, J. K. & Raso, J. Intra-observer reproducibility and interobserver reliability of the radiographic parameters in the spinal deformity study groups AIS radiographic measurement Manual. Spine 30, 1064–1069. https://doi.org/10.1097/01.brs.0000160840.51621.6b (2005).

  • Ogon, M. et al. Interobserver and intraobserver reliability of lenke’s new scoliosis classification system. Spine 27, 858–862. https://doi.org/10.1097/00007632-200204150-00014 (2002).

  • Kuklo, T. R., Potter, B. K., Schroeder, T. M. & O’Brien, M. F. Comparison of manual and digital measurements in adolescent idiopathic scoliosis. Spine. 31, 1240–1246. https://doi.org/10.1097/01.brs.0000217774.13433.a7 (2006).

  • Mok, J. M. et al. Comparison of observer variation in conventional and three digital radiographic methods used in the evaluation of patients with adolescent idiopathic scoliosis. Spine 33, 681–686. https://doi.org/10.1097/BRS.0b013e318166aa8d (2008).

  • Liu, R. W. et al. Comparison of supine Bending, Push-Prone, and traction under general anesthesia radiographs in predicting curve flexibility and postoperative correction in adolescent idiopathic scoliosis. Spine. 35, 416–422. https://doi.org/10.1097/BRS.0b013e3181b3564a (2010).

    Google Scholar 

  • Jeandel, C. et al. Enhanced recovery following posterior spinal fusion for adolescent idiopathic scoliosis: A medical and economic study in a French private nonprofit pediatric hospital. Orthop. Traumatol. 109, 103626. https://doi.org/10.1016/j.otsr.2023.103626 (2023).

    Google Scholar 

  • Langlais, T. et al. Sagittal plane assessment of manual concave rod bending for posterior correction in adolescents with idiopathic thoracic scoliosis (Lenke 1 and 3). Orthop. Traumatol. 109, 103654. https://doi.org/10.1016/j.otsr.2023.103654 (2023).

  • Baldairon, F. et al. Analysis of factors associated with sagittal alignment deterioration after correction of degenerative scoliosis by in situ contouring. Orthop. Traumatol. 107, 103023. https://doi.org/10.1016/j.otsr.2021.103023 (2021).

  • Continue Reading