Demarco, F. F. et al. Longevity of composite restorations is definitely not only about materials. Dent. Mater. 39 (1), 1–12. https://doi.org/10.1016/j.dental.2022.11.009 (2023).
Askar, H. et al. Secondary caries: what is it, and how it can be controlled, detected, and managed? Clin. Oral Investig. 24 (5), 1869–1876. https://doi.org/10.1007/s00784-020-03268-7 (2020).
Brouwer, F., Askar, H., Paris, S. & Schwendicke, F. Detecting secondary caries lesions: a systematic review and meta-analysis. J. Dent. Res. 95 (2), 143–151. https://doi.org/10.1177/0022034515611041 (2016).
Signori, C. et al. Clinical relevance of studies on the visual and radiographic methods for detecting secondary caries lesions-a systematic review. J. Dent. 75, 22–33. https://doi.org/10.1016/j.jdent.2018.05.018 (2018).
Gimenez, T. et al. What is the most accurate method for detecting caries lesions? A systematic review. Commun. Dent. Oral Epidemiol. 49 (3), 216–224. https://doi.org/10.1111/cdoe.12641 (2021).
Moro, B. L. P. et al. Clinical accuracy of two different criteria for the detection of caries lesions around restorations in primary teeth. Caries Res. 56 (2), 98–108. https://doi.org/10.1159/000523951 (2022).
Uehara, J. L. S. et al. Accuracy of two visual criteria for the assessment of caries around restorations: a delayed-type cross-sectional study. Caries Res. 57 (1), 12–20. https://doi.org/10.1159/000528730 (2023).
Rahimi, H. M. et al. Deep learning for caries detection: a systematic review. J. Dent. 122, 104115. https://doi.org/10.1016/j.jdent.2022.104115 (2022).
Duong, D. L., Kabir, M. H. & Kuo, R. F. Automated caries detection with smartphone color photography using machine learning. Health Inf. J. 27 (2), 14604582211007530, 1–17. https://doi.org/10.1177/14604582211007530 (2021).
Yu, H. et al. A new technique for diagnosis of dental caries on the children’s first permanent molar. IEEE Access. 8, 185776–185785. https://doi.org/10.1109/ACCESS.2020.3029454 (2020).
Geetha, V., Aprameya, K. S. & Hinduja, D. M. Dental caries diagnosis in digital radiographs using back-propagation neural network. Health Inform. Sci. Syst. 8 (1), 8, 1–14. https://doi.org/10.1007/s13755-019-0096-y (2020).
Cantu, G. et al. Detecting caries lesions of different radiographic on bitewings using deep learning. J. Dent. 100 (103425), 103425. https://doi.org/10.1016/j.jdent.2020.103425 (2020).
Vinayahalingam, S. et al. Classification of caries in third molars on panoramic radiographs using deep learning. Sci. Rep. 11 (1), 12609. https://doi.org/10.1038/s41598-021-92121-2 (2021).
Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Sci. Rep. 11 (1), 16807. https://doi.org/10.1038/s41598-021-96368-7 (2021).
Mao, Y. C. et al. Caries and restoration detection using bitewing film based on transfer learning with CNNs. Sens. (Basel). 21 (13), 4613. https://doi.org/10.3390/s21134613 (2021).
Bayraktar, Y. & Ayan, E. Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs. Clin. Oral Invest. 26 (1), 623–632. https://doi.org/10.1007/s00784-021-04040-1 (2022).
Kuhnisch, J., Meyer, O., Hesenius, M., Hickel, R. & Gruhn, V. Caries detection on intraoral images using artificial intelligence. J. Dent. Res. 101 (2), 158–165. https://doi.org/10.1177/00220345211032524 (2022).
Vimalarani, G. & Ramachandraiah, U. Automatic diagnosis and detection of dental caries in bitewing radiographs using pervasive deep gradient based LeNet classifier model. Microprocess. Microsyst. 94 https://doi.org/10.1016/j.micpro.2022.104654 (2022).
Zhu, Y. et al. Faster-RCNN based intelligent detection and localization of dental caries. Displays 74, 102201. https://doi.org/10.1016/j.displa.2022.102201 (2022).
Kumari, A. R., Rao, S. N. & Reddy, P. R. Design of hybrid dental caries segmentation and caries detection with meta-heuristic-based ResNeXt-RNN. Biomed. Signal Process. Control. 78, 103961. https://doi.org/10.1016/j.bspc.2022.103961 (2022).
Imak, A. et al. Dental caries detection using score-based multi-input deep convolutional neural network. IEEE Access. 10, 18320–18329. https://doi.org/10.1109/ACCESS.2022.3150358 (2022).
Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E. K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health. 22 (1), 573, 1–9. https://doi.org/10.1186/s12903-022-02589-1 (2022).
Kim, J., Lee, H. S., Song, I. S. & Jung, K. H. DeNTNet: Deep neural transfer network for the detection of periodontal bone loss using panoramic dental radiographs. Sci. Rep. 9 (1), 17615. https://doi.org/10.1038/s41598-019-53758-2 (2019).
Hung, M. et al. Application of machine learning for diagnostic prediction of root caries. Gerodontology 36 (4), 395–404. https://doi.org/10.1111/ger.12432 (2019).
Abdulaziz, A., Kheraif, A., Ashraf, Wahba, A. & Fouad, H. Detection of dental diseases from radiographic 2d dental image using a hybrid graph-cut technique and convolutional neural network. Measurement 146, 333–342. https://doi.org/10.1016/j.measurement.2019.06.014 (2019).
Roy, R., Ghosh, S. & Ghosh, A. Clinical ultrasound image standardization using histogram specification. Comput. Biol. Med. 120, 103746, 1–13. https://doi.org/10.1016/j.compbiomed.2020.103746 (2020).
Wisaeng, K. Retinal blood-vessel extraction using weighted kernel fuzzy C-means clustering and dilation-based functions. Diagnostics 13 (3), 342, 1–21. https://doi.org/10.3390/diagnostics13030342 (2023).
Xu, L., Liu, S. & Ma, J. Linear optimal filter for descriptor systems with time-correlated measurement noise. In 40th Chinese Control Conference (CCC), Shanghai, China, 3048–3053. https://doi.org/10.23919/CCC52363.2021.9549878 (2021).
Mardiris, V. & Chatzis, V. A configurable design for morphological erosion and dilation operations in image processing using quantum-dot cellular automata. J. Eng. Sci. Technol. Rev. 9 (2), 25–30. https://doi.org/10.25103/jestr.092.05 (2016).
Yu, K., Jiang, L., Fan, J. S., Xie, R. & Lan A feature-weighted suppressed possibilistic fuzzy c-means clustering algorithm and its application on color image segmentation. Expert Syst. Appl. 241, 122270, 1–39. https://doi.org/10.1016/j.eswa.2023.122270 (2024).
Yang, M. S. & Nataliani, Y. A. Feature-reduction fuzzy clustering algorithm based on feature-weighted entropy. IEEE Trans. Fuzzy Syst. 26 (2), 817–835. https://doi.org/10.1109/TFUZZ.2017.2692203 (2018).
Xu, S. et al. Semi-supervised fuzzy clustering algorithm based on prior membership degree matrix with expert preference. Expert Syst. Appl. 238, 121812. https://doi.org/10.1016/j.eswa.2023.121812 (2024).
Goh, T. Y., Basah, S. N., Yazid, H., Safar, M. J. A. & Saad, F. S. A. Performance analysis of image thresholding: Otsu technique. Measurement 114, 298–307. https://doi.org/10.1016/j.measurement.2017.09.052 (2018).
Faragallah, O. S., Hoseny, H. M. E. & Sayed, H. S. E. Efficient brain tumor segmentation using OTSU and K-means clustering in homomorphic transform. Biomed. Signal Process. Control. 84, 104712, 1–14. https://doi.org/10.1016/j.bspc.2023.104712 (2023).
Qayyum, A. et al. Dental caries detection using a semi-supervised learning approach. Sci. Rep. 13, 749, 1–11. https://doi.org/10.1038/s41598-023-27808-9 (2023).