A computational intelligence approach for classifying dental caries in X-ray images using integrated fuzzy C-means clustering with feature reduction and a weighted matrix scheme

  • Demarco, F. F. et al. Longevity of composite restorations is definitely not only about materials. Dent. Mater. 39 (1), 1–12. https://doi.org/10.1016/j.dental.2022.11.009 (2023).

    Google Scholar 

  • Askar, H. et al. Secondary caries: what is it, and how it can be controlled, detected, and managed? Clin. Oral Investig. 24 (5), 1869–1876. https://doi.org/10.1007/s00784-020-03268-7 (2020).

    Google Scholar 

  • Brouwer, F., Askar, H., Paris, S. & Schwendicke, F. Detecting secondary caries lesions: a systematic review and meta-analysis. J. Dent. Res. 95 (2), 143–151. https://doi.org/10.1177/0022034515611041 (2016).

    Google Scholar 

  • Signori, C. et al. Clinical relevance of studies on the visual and radiographic methods for detecting secondary caries lesions-a systematic review. J. Dent. 75, 22–33. https://doi.org/10.1016/j.jdent.2018.05.018 (2018).

    Google Scholar 

  • Gimenez, T. et al. What is the most accurate method for detecting caries lesions? A systematic review. Commun. Dent. Oral Epidemiol. 49 (3), 216–224. https://doi.org/10.1111/cdoe.12641 (2021).

    Google Scholar 

  • Moro, B. L. P. et al. Clinical accuracy of two different criteria for the detection of caries lesions around restorations in primary teeth. Caries Res. 56 (2), 98–108. https://doi.org/10.1159/000523951 (2022).

    Google Scholar 

  • Uehara, J. L. S. et al. Accuracy of two visual criteria for the assessment of caries around restorations: a delayed-type cross-sectional study. Caries Res. 57 (1), 12–20. https://doi.org/10.1159/000528730 (2023).

    Google Scholar 

  • Rahimi, H. M. et al. Deep learning for caries detection: a systematic review. J. Dent. 122, 104115. https://doi.org/10.1016/j.jdent.2022.104115 (2022).

    Google Scholar 

  • Duong, D. L., Kabir, M. H. & Kuo, R. F. Automated caries detection with smartphone color photography using machine learning. Health Inf. J. 27 (2), 14604582211007530, 1–17. https://doi.org/10.1177/14604582211007530 (2021).

    Google Scholar 

  • Yu, H. et al. A new technique for diagnosis of dental caries on the children’s first permanent molar. IEEE Access. 8, 185776–185785. https://doi.org/10.1109/ACCESS.2020.3029454 (2020).

    Google Scholar 

  • Geetha, V., Aprameya, K. S. & Hinduja, D. M. Dental caries diagnosis in digital radiographs using back-propagation neural network. Health Inform. Sci. Syst. 8 (1), 8, 1–14. https://doi.org/10.1007/s13755-019-0096-y (2020).

    Google Scholar 

  • Cantu, G. et al. Detecting caries lesions of different radiographic on bitewings using deep learning. J. Dent. 100 (103425), 103425. https://doi.org/10.1016/j.jdent.2020.103425 (2020).

    Google Scholar 

  • Vinayahalingam, S. et al. Classification of caries in third molars on panoramic radiographs using deep learning. Sci. Rep. 11 (1), 12609. https://doi.org/10.1038/s41598-021-92121-2 (2021).

    Google Scholar 

  • Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Sci. Rep. 11 (1), 16807. https://doi.org/10.1038/s41598-021-96368-7 (2021).

    Google Scholar 

  • Mao, Y. C. et al. Caries and restoration detection using bitewing film based on transfer learning with CNNs. Sens. (Basel). 21 (13), 4613. https://doi.org/10.3390/s21134613 (2021).

    Google Scholar 

  • Bayraktar, Y. & Ayan, E. Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs. Clin. Oral Invest. 26 (1), 623–632. https://doi.org/10.1007/s00784-021-04040-1 (2022).

    Google Scholar 

  • Kuhnisch, J., Meyer, O., Hesenius, M., Hickel, R. & Gruhn, V. Caries detection on intraoral images using artificial intelligence. J. Dent. Res. 101 (2), 158–165. https://doi.org/10.1177/00220345211032524 (2022).

    Google Scholar 

  • Vimalarani, G. & Ramachandraiah, U. Automatic diagnosis and detection of dental caries in bitewing radiographs using pervasive deep gradient based LeNet classifier model. Microprocess. Microsyst. 94 https://doi.org/10.1016/j.micpro.2022.104654 (2022).

  • Zhu, Y. et al. Faster-RCNN based intelligent detection and localization of dental caries. Displays 74, 102201. https://doi.org/10.1016/j.displa.2022.102201 (2022).

    Google Scholar 

  • Kumari, A. R., Rao, S. N. & Reddy, P. R. Design of hybrid dental caries segmentation and caries detection with meta-heuristic-based ResNeXt-RNN. Biomed. Signal Process. Control. 78, 103961. https://doi.org/10.1016/j.bspc.2022.103961 (2022).

    Google Scholar 

  • Imak, A. et al. Dental caries detection using score-based multi-input deep convolutional neural network. IEEE Access. 10, 18320–18329. https://doi.org/10.1109/ACCESS.2022.3150358 (2022).

    Google Scholar 

  • Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E. K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health. 22 (1), 573, 1–9. https://doi.org/10.1186/s12903-022-02589-1 (2022).

    Google Scholar 

  • Kim, J., Lee, H. S., Song, I. S. & Jung, K. H. DeNTNet: Deep neural transfer network for the detection of periodontal bone loss using panoramic dental radiographs. Sci. Rep. 9 (1), 17615. https://doi.org/10.1038/s41598-019-53758-2 (2019).

    Google Scholar 

  • Hung, M. et al. Application of machine learning for diagnostic prediction of root caries. Gerodontology 36 (4), 395–404. https://doi.org/10.1111/ger.12432 (2019).

    Google Scholar 

  • Abdulaziz, A., Kheraif, A., Ashraf, Wahba, A. & Fouad, H. Detection of dental diseases from radiographic 2d dental image using a hybrid graph-cut technique and convolutional neural network. Measurement 146, 333–342. https://doi.org/10.1016/j.measurement.2019.06.014 (2019).

  • Roy, R., Ghosh, S. & Ghosh, A. Clinical ultrasound image standardization using histogram specification. Comput. Biol. Med. 120, 103746, 1–13. https://doi.org/10.1016/j.compbiomed.2020.103746 (2020).

    Google Scholar 

  • Wisaeng, K. Retinal blood-vessel extraction using weighted kernel fuzzy C-means clustering and dilation-based functions. Diagnostics 13 (3), 342, 1–21. https://doi.org/10.3390/diagnostics13030342 (2023).

    Google Scholar 

  • Xu, L., Liu, S. & Ma, J. Linear optimal filter for descriptor systems with time-correlated measurement noise. In 40th Chinese Control Conference (CCC), Shanghai, China, 3048–3053. https://doi.org/10.23919/CCC52363.2021.9549878 (2021).

  • Mardiris, V. & Chatzis, V. A configurable design for morphological erosion and dilation operations in image processing using quantum-dot cellular automata. J. Eng. Sci. Technol. Rev. 9 (2), 25–30. https://doi.org/10.25103/jestr.092.05 (2016).

    Google Scholar 

  • Yu, K., Jiang, L., Fan, J. S., Xie, R. & Lan A feature-weighted suppressed possibilistic fuzzy c-means clustering algorithm and its application on color image segmentation. Expert Syst. Appl. 241, 122270, 1–39. https://doi.org/10.1016/j.eswa.2023.122270 (2024).

    Google Scholar 

  • Yang, M. S. & Nataliani, Y. A. Feature-reduction fuzzy clustering algorithm based on feature-weighted entropy. IEEE Trans. Fuzzy Syst. 26 (2), 817–835. https://doi.org/10.1109/TFUZZ.2017.2692203 (2018).

    Google Scholar 

  • Xu, S. et al. Semi-supervised fuzzy clustering algorithm based on prior membership degree matrix with expert preference. Expert Syst. Appl. 238, 121812. https://doi.org/10.1016/j.eswa.2023.121812 (2024).

    Google Scholar 

  • Goh, T. Y., Basah, S. N., Yazid, H., Safar, M. J. A. & Saad, F. S. A. Performance analysis of image thresholding: Otsu technique. Measurement 114, 298–307. https://doi.org/10.1016/j.measurement.2017.09.052 (2018).

    Google Scholar 

  • Faragallah, O. S., Hoseny, H. M. E. & Sayed, H. S. E. Efficient brain tumor segmentation using OTSU and K-means clustering in homomorphic transform. Biomed. Signal Process. Control. 84, 104712, 1–14. https://doi.org/10.1016/j.bspc.2023.104712 (2023).

    Google Scholar 

  • Qayyum, A. et al. Dental caries detection using a semi-supervised learning approach. Sci. Rep. 13, 749, 1–11. https://doi.org/10.1038/s41598-023-27808-9 (2023).

    Google Scholar 

  • Continue Reading