Exceptional flare tests blazar emission models – CERN Courier

Pre-launch checks The Imaging X-ray Polarimetry Explorer. Credit: Ball Aerospace

Active galactic nuclei (AGNs) are extremely energetic regions at the centres of galaxies, powered by accretion onto a supermassive black hole. Some AGNs launch plasma outflows moving near light speed. Blazars are a subclass of AGNs whose jets are pointed almost directly at Earth, making them appear exceptionally bright across the electro­magnetic spectrum. A new analysis of an exceptional flare of BL Lacertae by NASA’s Imaging X-ray Polarimetry Explorer (IXPE) has now shed light on their emission mechanisms.

The spectral energy distribution of blazars generally has two broad peaks. The low-energy peak from radio to X-rays is well explained by synchrotron radiation from relativistic electrons spiraling in magnetic fields, but the origin of the higher-energy peak from X-rays to γ-rays is a longstanding point of contention, with two classes of models, dubbed hadronic and leptonic, vying to explain it. Polarisation measurements offer a key diagnostic tool, as the two models predict distinct polarisation signatures.

Model signatures

In hadronic models, high-energy emission is produced by protons, either through synchrotron radiation or via photo-hadronic interactions that generate secondary particles. Hadronic models predict that X-ray polarisation should be as high as that in the optical and millimetre bands, even in complex jet structures.

Leptonic models are powered by inverse Compton scattering, wherein relativistic electrons “upscatter” low-energy photons, boosting them to higher energies with low polarisation. Leptonic models can be further subdivided by the source of the inverse-Compton-scattered photons. If initially generated by synchrotron radiation in the AGN (synchrotron self-Compton, SSC), modest polarisation (~50%) is expected due to the inherent polarisation of synchrotron photons, with further reductions if the emission comes from inhomogeneous or multiple emitting regions. If initially generated by external sources (external Compton, EC), isotropic photon fields from the surrounding structures are expected to average out their polarisation.

IXPE launched on 9 December 2021, seeking to resolve such questions. It is designed to have 100-fold better sensitivity to the polarisation of X-rays in astrophysical sources than the last major X-ray polarimeter, which was launched half a century ago (CERN Courier July/August 2022 p10). In November 2023, it participated in a coordinated multiwavelength campaign spanning radio, millimetre and optical, and X-ray bands targeted the blazar BL Lacertae, whose X-ray emission arises mostly from the high-energy component, with its low-energy synchrotron component mainly at infrared energies. The campaign captured an exceptional flare, providing a rare opportunity to test competing emission models.

Optical telescopes recorded a peak optical polarisation of 47.5 ± 0.4%, the highest ever measured in a blazar. The short-mm (1.3 mm) polarisation also rose to about 10%, with both bands showing similar trends in polarisation angle. IXPE measured no significant polarisation in the 2 to 8 keV X-ray band, placing a 3σ upper limit of 7.4%.

The striking contrast between the high polarisation in optical and mm bands, and a strict upper limit in X-rays, effectively rules out all single-zone and multi-region hadronic models. Had these processes dominated, the X-ray polarisation would have been comparable to the optical. Instead, the observations strongly support a leptonic origin, specifically the SSC model with a stratified or multi-zone jet structure that naturally explains the low X-ray polarisation.

A key feature of the flare was the rapid rise and fall of optical polarisation

A key feature of the flare was the rapid rise and fall of optical polarisation. Initially, it was low, of order 5%, and aligned with the jet direction, suggesting the dominance of poloidal or turbulent fields. A sharp increase to nearly 50%, while retaining alignment, indicates the sudden injection of a compact, toroidally dominated magnetic structure.

The authors of the analysis propose a “magnetic spring” model wherein a tightly wound toroidal field structure is injected into the jet, temporarily ordering the magnetic field and raising the optical polarisation. As the structure travels outward, it relaxes, likely through kink instabilities, causing the polarisation to decline over about two weeks. This resembles an elastic system, briefly stretched and then returning to equilibrium.

A magnetic spring would also explain the multiwavelength flaring. The injection boosted the total magnetic field strength, triggering an unprecedented mm-band flare powered by low-energy electrons with long cooling times. The modest rise in mm-wavelength polarisation (green points) suggests emission from a large, turbulent region. Meanwhile, optical flaring (black points) was suppressed due to the rapid synchrotron cooling of high-energy electrons, consistent with the observed softening of the optical spectrum. No significant γ-ray enhancement was observed, as these photons originate from the same rapidly cooling electron population.

Turning point

These findings mark a turning point in high-energy astrophysics. The data definitively favour leptonic emission mechanisms in BL Lacertae during this flare, ruling out efficient proton acceleration and thus any associated high-energy neutrino or cosmic-ray production. The ability of the jet to sustain nearly 50% polarisation across parsec scales implies a highly ordered, possibly helical magnetic field extending far from the supermassive black hole.

The results cement polarimetry as a definitive tool in identifying the origin of blazar emission. The dedicated Compton Spectrometer and Imager (COSI) γ-ray polarimeter is soon set to complement IXPE at even higher energies when launched by NASA in 2027. Coordinated campaigns will be crucial for probing jet composition and plasma processes in AGNs, helping us understand the most extreme environments in the universe.

Further reading

I Agudo 2025 arXiv:2505.01832.

Continue Reading