Closed-form design optimization for LLC converters with wide output voltage range based on FHA

  • Chen, B. High frequency design and efficiency optimization of LLC resonant converter based on SiC devices. Appl. Comput. Eng. 145, 176–181. https://doi.org/10.54254/2755-2721/2025.22243 (2025).

    Google Scholar 

  • Mao, W. & Ma, X. LLC resonant converter analysis in PO mode. J. Phys. Conf. Ser. 2758, 012051. https://doi.org/10.1088/1742-6596/2758/1/012009 (2024).

    Google Scholar 

  • Galal, O. Y., Abdelsalam, I. & Marei, M. I. Partially isolated three-port converter for electric vehicle charging applications. Proc. MEPCON Conference (2024). https://doi.org/10.1109/MEPCON63025.2024.10850482

    Google Scholar 

  • Rocha, J. et al. Design and implementation of a DC–DC resonant LLC converter for electric vehicle fast chargers. Energies 18, 1099. https://doi.org/10.3390/en18051099 (2025).

    Google Scholar 

  • Farag, A. Y., Amer, M. R., El-Metwally, K. & Mahgoub, A. Design methodology of LLC resonant converter for PV-powered Li-ion battery charger. IEEE Access. 13, 115640–115652. https://doi.org/10.1109/ACCESS.2025.3585483 (2025).

    Google Scholar 

  • Jia, P. & Liu, M. A wide range LLC resonant converter realized by an adjustable turns ratio transformer. IEEE Trans. Power Electron. 40, 10396–10401. https://doi.org/10.1109/TPEL.2025.3561804 (2025).

    Google Scholar 

  • Beiranvand, R., Rashidian, B., Zolghadri, M. & Alavi, S. M. Using LLC resonant converter for designing wide-range voltage source. IEEE Trans. Ind. Electron. 58, 1746–1756. https://doi.org/10.1109/TIE.2010.2052537 (2011).

    Google Scholar 

  • Zhou, X. et al. Wide voltage-regulation range synchronous-rectifier LLC converter with novel operation modes. IEEE Transactions Transportation Electrification in Press 1–1 (2025). https://doi.org/10.1109/TTE.2025.3545817

  • Song, H., Xu, D. & Zhang, A. J. Re-analysis on ZVS condition for LLC converter. 2021 IEEE Application Power Electronic Conference Exponential (APEC) 1874–1880 (2021). https://doi.org/10.1109/APEC42165.2021.9487400

  • Beiranvand, R., Rashidian, B., Zolghadri, M. R. & Alavi, S. M. H. A design procedure for optimizing the LLC resonant converter as a wide output range voltage source. IEEE Trans. Power Electron. 27, 3749–3763. https://doi.org/10.1109/TPEL.2012.2187801 (2012).

    Google Scholar 

  • Hua, C. C., Lai, J. B. & Hung, W. C. A parallel dual LLC resonant converter with wide output voltage range for energy system applications. Energies 18, 1635. https://doi.org/10.3390/en18071635 (2025).

    Google Scholar 

  • Yu, H., Xie, X., Yang, Q. & Lou, Y. Wide output voltage range LLC resonant converter for 800 V electric-vehicle battery chargers. J. Power Electron. 25, 1054–1067. https://doi.org/10.1007/s43236-025-01002-8 (2025).

    Google Scholar 

  • Sim, D. H., Lee, J. A. & Lee, B. K. Design and control strategies for a 25 kW LLC converter with a wide output voltage range comprising distributed core transformers. J. Electr. Eng. Technol. 20, 2179–2190. https://doi.org/10.1007/s42835-025-02154-0 (2025).

    Google Scholar 

  • Yoo, J. S., Gil, Y. & Ahn, T. Y. Steady-state analysis and optimal design of an LLC resonant converter considering internal loss resistance. Energies 15, 8144. https://doi.org/10.3390/en15218144 (2022).

    Google Scholar 

  • Jami, M., Beiranvand, R., Mohamadian, M. & Ghasemi, M. Optimization the LLC resonant converter for achieving maximum efficiency at a predetermined load value. 6th Power Electronic Drive System Technology Conference (PEDSTC) 149–155 (2015). https://doi.org/10.1109/PEDSTC.2015.7093265

  • Yin, M. & Luo, Q. Stepwise multi-objective parameter optimization design of LLC resonant DC–DC converter. Energies 17 (1919). https://doi.org/10.3390/en17081919 (2024).

  • Zuo, Y., Niu, H., Zhang, R. & Pan, X. The modified FHA and simplified time-domain analysis methodologies for LLC resonant converter. IEEE 12th Energy Conversation Congress Exponential Asia (ECCE-Asia), 56–61 (2021)., 56–61 (2021). (2021). https://doi.org/10.1109/ECCE-Asia49820.2021.9479161

  • Zhang, S. et al. An accurate dynamic time-domain model for LLC resonant converter by considering nonideal components, various modulation strategies, and dynamic process. IEEE J. Emerg. Sel. Top. Power Electron. 13, 3119–3137. https://doi.org/10.1109/JESTPE.2025.3558288 (2025).

    Google Scholar 

  • Luo, J., Wang, J., Fang, Z., Shao, J. & Li, J. Optimal design of a high efficiency LLC resonant converter with a narrow frequency range for voltage regulation. Energies 11, 1124. https://doi.org/10.3390/en11051124 (2018).

    Google Scholar 

  • Bhuvela, P., Taghavi, H. & Nasiri, A. Design methodology for a medium voltage single stage LLC resonant solar PV inverter. In 12th International Conference Renewable Energy Research Applications (ICRERA) 556–562 (2023). https://doi.org/10.1109/ICRERA59003.2023.10269431

  • Yin, M. & Luo, Q. Stepwise multi-objective parameter optimization design of LLC resonant DC–DC converter. Energies 17, (1919). (2024) https://doi.org/10.3390/en17081919

  • Zhao, Y., Wang, C. & Lei, M. Multi-objective parameter optimization of LLC resonant converter based on PO mode. J. Electr. Eng. Technol. 20, 2479–2495. https://doi.org/10.1007/s42835-025-02207-4 (2025).

    Google Scholar 

  • Park, S. S., Yang, S. H. & Kim, R. Y. Multi-objective optimal design for LLC converters based on TDA and surrogate model for high accuracy and low computational burden. In 2024 IEEE Energy Conversation Congress Exposure (ECCE). 4401–4407 (2024). https://doi.org/10.1109/ECCE55643.2024.10861802

  • De Simone, S., Adragna, C., Spini, C. & Gattavari, G. Design-oriented steady-state analysis of LLC resonant converters based on FHA. Int. Symp. Power Electron. Electr. Drives Autom. Motion (SPEEDAM), 200–207 (2006). ), 200–207 (2006). (2006). https://doi.org/10.1109/SPEEDAM.2006.1649771

  • Wei, Y., Luo, Q., Wang, Z. & Mantooth, H. A. A complete step-by-step optimal design for LLC resonant converter. IEEE Trans. Power Electron. 36, 3674–3691. https://doi.org/10.1109/TPEL.2020.3015094 (2021).

    Google Scholar 

  • Xiao, Z., He, Z., Guan, R. & Luo, A. Piecewise-approximated time domain analysis of LLC resonant converter considering parasitic capacitors and deadtime. IEEE Trans. Power Electron. 38, 578–592. https://doi.org/10.1109/TPEL.2022.3207329 (2023).

    Google Scholar 

  • Zhao, Q., Zhang, J., Gao, Y., Wang, D. & Yang, Q. Hybrid variable frequency LLC resonant converter with wide output voltage range. IEEE Trans. Power Electron. 38, 11038–11049. https://doi.org/10.1109/TPEL.2023.3283548 (2023).

    Google Scholar 

  • Continue Reading