Differential cold stress intensities drive unique morphological and transcriptomic changes in Zea mays root hairs | BMC Genomics

  • Kennett DJ, Prufer KM, Culleton BJ, George RJ, Robinson M, et al. Early isotopic evidence for maize as a staple grain in the Americas. Sci Adv. 2020;6(23): eaba3245.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Erenstein O, Jaleta M, Sonder K, Mottaleb K, Prasanna BM. Global maize production, consumption and trade: trends and R&D implications. Food Secur. 2022;14(5):1295–319.

    Google Scholar 

  • Ranum P, Peña-Rosas JP, Garcia-Casal MN. Global maize production, utilization, and consumption. Ann N Y Acad Sci. 2014;1312(1):105–12.

    PubMed 

    Google Scholar 

  • Hake S, Ross-Ibarra J. Genetic, evolutionary and plant breeding insights from the domestication of maize. eLife. 2015;4:e05861.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Varma VS, Durga KK, Neelima P. Effect of sowing date on maize seed yield and quality: a review. Review of Plant Studies. 2014;1(2):26–38.

    Google Scholar 

  • Lamichhane JR, Soltani E. Sowing and seedbed management methods to improve establishment and yield of maize, rice and wheat across drought-prone regions: a review. J Agric Food Res. 2020;2: 100089.

    Google Scholar 

  • Rodríguez VM, Romay MC, Ordás A, Revilla P. Evaluation of European maize (Zea mays L.) germplasm under cold conditions. Genet Resour Crop Evol. 2010;57:329–35.

    Google Scholar 

  • Yu T, Zhang J, Cao J, Li X, Li S, Liu C, Wang L. Metabolic insight into cold stress response in two contrasting maize lines. Life. 2022;12(2):282.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang L, Zhang Z, Chen Y, Wei X, Song X. Exposure, vulnerability, and adaptation of major maize-growing areas to extreme temperature. Nat Hazards. 2018;91:1257–72.

    Google Scholar 

  • Aroca R, Tognoni F, Irigoyen JJ, Sánchez-Díaz M, Pardossi A. Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol Biochem. 2001;39(12):1067–73.

    Google Scholar 

  • Melkonian J, Yu LX, Setter TL. Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance. J Exp Bot. 2004;55(403):1751–60.

    PubMed 

    Google Scholar 

  • Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KH. Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci. 2009;60(6):501–16.

    Google Scholar 

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T. Specific and unspecific responses of plants to cold and drought stress. J Biosci. 2007;32:501–10.

    PubMed 

    Google Scholar 

  • Nagel KA, Kastenholz B, Jahnke S, Van Dusschoten D, Aach T, et al. Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Funct Plant Biol. 2009;36(11):947–59.

    PubMed 

    Google Scholar 

  • Frey FP, Pitz M, Schön CC, Hochholdinger F. Transcriptomic diversity in seedling roots of European flint maize in response to cold. BMC Genomics. 2020;21:1–5.

    Google Scholar 

  • Zhou Y, Sommer ML, Meyer A, Wang D, Klaus A, et al. Cold mediates maize root hair developmental plasticity via epidermis-specific transcriptomic responses. Plant Physiol. 2024;196(3):2105–20.

    PubMed 

    Google Scholar 

  • Peterson RL, Farquhar ML. Root hairs: specialized tubular cells extending root surfaces. Bot Rev. 1996;62:1–40.

    Google Scholar 

  • Gilroy S, Jones DL. Through form to function: root hair development and nutrient uptake. Trends Plant Sci. 2000;5(2):56–60.

    PubMed 

    Google Scholar 

  • Sowiński P, Fronk J, Jończyk M, Grzybowski M, Kowalec P, Sobkowiak A. Maize response to low temperatures at the gene expression level: a critical survey of transcriptomic studies. Front Plant Sci. 2020;11: 576941.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sobkowiak A, Jończyk M, Jarochowska E, Biecek P, Trzcinska-Danielewicz J, et al. Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines. Plant Mol Biol. 2014;85:317–31.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwarari D, Guan Y, Ahmad B, Movahedi A, Min T, Hao Z, et al. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. Int J Mol Sci. 2022;23(3): 1549.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Raza A, Charagh S, Najafi-Kakavand S, Abbas S, Shoaib Y, Anwar S, et al. Role of phytohormones in regulating cold stress tolerance: physiological and molecular approaches for developing cold-smart crop plants. Plant Stress. 2023;8: 100152.

    Google Scholar 

  • Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:1–10.

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012(1):217037.

    Google Scholar 

  • Ploschuk EL, Bado LA, Salinas M, Wassner DF, Windauer LB, Insausti P. Photosynthesis and fluorescence responses of Jatropha curcas to chilling and freezing stress during early vegetative stages. Environ Exp Bot. 2014;102:18–26.

    Google Scholar 

  • Karami-Moalem S, Maali-Amiri R, Kazemi-Shahandashti SS. Effect of cold stress on oxidative damage and mitochondrial respiratory properties in chickpea. Plant Physiol Biochem. 2018;122:31–9.

    PubMed 

    Google Scholar 

  • Kärkönen A, Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry. 2015;112:22–32.

    PubMed 

    Google Scholar 

  • Tai F, Wang S, Liang B, Li Y, Wu J, Fan C, et al. Quaternary ammonium iminofullerenes improve root growth of oxidative-stress maize through ASA-GSH cycle modulating redox homeostasis of roots and ROS-mediated root-hair elongation. J Nanobiotechnol. 2022;20(1):15.

    Google Scholar 

  • Xu Y, Hu D, Hou X, Shen J, Liu J, Cen X, et al. OsTMF attenuates cold tolerance by affecting cell wall properties in rice. New Phytol. 2020;227(2):498–512.

    PubMed 

    Google Scholar 

  • Li Q, Shen W, Zheng Q, Fowler DB, Zou J. Adjustments of lipid pathways in plant adaptation to temperature stress. Plant Signaling & Behavior. 2016;11(1): e1058461.

    Google Scholar 

  • Weiss J, Egea-Cortines M. Transcriptomic analysis of cold response in tomato fruits identifies dehydrin as a marker of cold stress. J Appl Genet. 2009;50:311–9.

    PubMed 

    Google Scholar 

  • Gall HL, Philippe F, Domon JM, Gillet F, Pelloux J, et al. Cell wall metabolism in response to abiotic stress. Plants. 2015;4(1):112–66.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang N, Zhao H, Shi J, Wu Y, Jiang J. Functional characterization of class I SlHSP17. 7 gene responsible for tomato cold-stress tolerance. Plant Sci. 2020;298:110568.

    PubMed 

    Google Scholar 

  • yyGreaves JA. Improving suboptimal temperature tolerance in maize-the search for variation. J Exp Bot. 1996;47(3):307–23.

    Google Scholar 

  • Szalai G, Majláth I, Pál M, Gondor OK, Rudnóy S, Oláh C, et al. Janus-faced nature of light in the cold acclimation processes of maize. Front Plant Sci. 2018;9: 850.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Božić M, Nikolić A, Marković K, Delić N, Milivojević M, Vančetović J, et al. Surveying maize seedlings as the first step for re-evaluating cold tolerance in maize inbred lines. Agric Res Technol. 2021;25(4):5562311.

    Google Scholar 

  • Pritchard J, Barlow PW, Adam JS, Tomos AD. Biophysics of the inhibition of the growth of maize roots by lowered temperature. Plant Physiol. 1990;93(1):222–30.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baldauf JA, Marcon C, Lithio A, Vedder L, Altrogge L, Piepho HP, et al. Single-parent expression is a general mechanism driving extensive complementation of non-syntenic genes in maize hybrids. Curr Biol. 2018;28(3):431–7.

    PubMed 

    Google Scholar 

  • Hoecker N, Keller B, Piepho HP, Hochholdinger F. Manifestation of heterosis during early maize (Zea mays L.) root development. Theor Appl Genet. 2006;112:421–9.

    PubMed 

    Google Scholar 

  • García-González J, Lacek J, Retzer K. Dissecting hierarchies between light, sugar and auxin action underpinning root and root hair growth. Plants. 2021;10(1): 111.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sánchez B, Rasmussen A, Porter JR. Temperatures and the growth and development of maize and rice: a review. Glob Change Biol. 2014;20(2):408–17.

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheres B, Benfey P, Dolan L. Root development. The Arabidopsis Book. Amer Soc Plant Biol. 2002;1:e0101.

    Google Scholar 

  • Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:1–4.

    Google Scholar 

  • Team RD. R: a language and environment for statistical computing. 2010.

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.

    Google Scholar 

  • Wickham H, Sievert C. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.

    Google Scholar 

  • Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.

    PubMed 

    Google Scholar 

  • Portwood JL, Woodhouse MR, Cannon EK, Gardiner JM, Harper LC, Schaeffer ML, et al. MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Res. 2019;47(D1):D1146-54.

    PubMed 

    Google Scholar 

  • Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29(14):1830–1.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Friero I, Larriba E, Martínez-Melgarejo PA, Justamante MS, Alarcón MV, et al. Transcriptomic and hormonal analysis of the roots of maize seedlings grown hydroponically at low temperature. Plant Sci. 2023;326: 111525.

    PubMed 

    Google Scholar 

  • Barlow PW, Adam JS. Anatomical disturbances in primary roots of Zea mays following periods of cool temperature. Environ Exp Bot. 1989;29(3):323–36.

    Google Scholar 

  • Mendrinna A, Persson S. Root hair growth: it’s a one way street. F1000Prime Rep. 2015;7: 23.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Opitz N, Paschold A, Marcon C, Malik WA, Lanz C, Piepho HP, et al. Transcriptomic complexity in young maize primary roots in response to low water potentials. BMC Genomics. 2014;15:1–3.

    Google Scholar 

  • Andersen JR, Zein I, Wenzel G, Darnhofer B, Eder J, Ouzunova M, et al. Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds. BMC Plant Biol. 2008;8:1–4.

    Google Scholar 

  • Zhao X, Li P, Li C, Xia T. The key regulators and metabolic intermediates of lignin response to low temperatures revealed by transcript and targeted metabolic profiling analysis in poplar. Agron. 2022;12(10): 2506.

    Google Scholar 

  • Kang X, Kirui A, Dickwella Widanage MC, Mentink-Vigier F, Cosgrove DJ, Wang T. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun. 2019;10(1): 347.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shrestha UR, Smith S, Pingali SV, Yang H, Zahran M, Breunig L, et al. Arabinose substitution effect on xylan rigidity and self-aggregation. Cellulose. 2019;26:2267–78.

    Google Scholar 

  • Zhang Y, Wu H, Li X, Ge Y, Lu X, Li H. Characterization of ZmCesAs for secondary cell wall biosynthesis in maize. J Plant Biol. 2024;67(2):161–74.

    Google Scholar 

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, et al. Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol. 2000;227(2):618–32.

    PubMed 

    Google Scholar 

  • Lin C, Choi HS, Cho HT. Root hair-specific expansin A7 is required for root hair elongation in Arabidopsis. Mol Cells. 2011;31:393–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho HT, Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell. 2002;14(12):3237–53.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hey S, Baldauf J, Opitz N, Lithio A, Pasha A, Provart N, et al. Complexity and specificity of the maize (Zea mays L.) root hair transcriptome. J Exp Bot. 2017;68(9):2175–85.

    PubMed 
    PubMed Central 

    Google Scholar 

  • He Z, Zhang J, Jia H, Zhang S, Sun X, Nishawy E, et al. Genome-wide identification and analyses of ZmAPY genes reveal their roles involved in maize development and abiotic stress responses. Mol Breed. 2024;44(5): 37.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim MH, Wu J, Yao J, Gallardo IF, Dugger JW, Webb LJ, et al. Apyrase suppression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses. Plant Physiol. 2014;164(4):2054–67.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shan Y, Zhang D, Luo Z, Li T, Qu H, Duan X, et al. Advances in chilling injury of postharvest fruit and vegetable: extracellular ATP aspects. Compr Rev Food Sci Food Saf. 2022;21(5):4251–73.

    PubMed 

    Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants. 2020;9(8):681.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 2005;24:255–65.

    PubMed 

    Google Scholar 

  • Wang Y, Wang Q, Zhao Y, Han G, Zhu S. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene. 2015;566(1):95–108.

    PubMed 

    Google Scholar 

  • Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, Schroeder JI. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol. 2022;23(10):680–94.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang H, Wang H, Shao H, Tang X. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci. 2016;7: 67.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoon Y, Seo DH, Shin H, Kim HJ, Kim CM, Jang G. The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agron. 2020;10(6):788.

    Google Scholar 

  • Xie Z, Nolan TM, Jiang H, Yin Y. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front Plant Sci. 2019;10:228.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong X, Yan Y, Jiang B, Shi Y, Jia Y, Cheng J, et al. The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures. EMBO J. 2020;39(13): e103630.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Song Y, Zhang X, Li M, Yang H, Fu D, Lv J, et al. The direct targets of CBFs: in cold stress response and beyond. J Integr Plant Biol. 2021;63(11):1874–87.

    PubMed 

    Google Scholar 

  • Yi K, Menand B, Bell E, Dolan L. A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat Genet. 2010;42(3):264–7.

    PubMed 

    Google Scholar 

  • Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, et al. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet. 2012;8(1): e1002446.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Retzer K, Weckwerth W. The tor–auxin connection upstream of root hair growth. Plants. 2021;10(1): 150.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Carraro N, Forestan C, Canova S, Traas J, Varotto S. ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol. 2006;142(1):254–64.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan D, Gao Y, Zhang Y, Li D, Dirk LM, Downie AB, et al. Raffinose catabolism enhances maize waterlogging tolerance by stimulating adventitious root growth and development. J Exp Bot. 2024;75(18):5955–70.

    PubMed 

    Google Scholar 

  • Han X, Zhang M, Yang M, Hu Y. Arabidopsis JAZ proteins interact with and suppress RHD6 transcription factor to regulate jasmonate-stimulated root hair development. Plant Cell. 2020;32(4):1049–62.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu Y, Jiang L, Wang F, Yu D. Jasmonate regulates the inducer of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell. 2013;25(8):2907–24.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang H, Shi Y, Liu J, Li Z, Fu D, Wu S, et al. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. Nat Plants. 2022;8(10):1176–90.

    PubMed 

    Google Scholar 

  • Zeng R, Zhang X, Song G, Lv Q, Li M, Fu D, et al. Genetic variation in the aquaporin TONOPLAST INTRINSIC PROTEIN 4; 3 modulates maize cold tolerance. Plant Biotechnol J. 2024;22(11):3037–50.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Takatsuka H, Sasaki A, Takahashi N, Shibata M, Sugimoto K, Tanaka M, et al. Cytokinin signaling promotes root hair growth by directly regulating RSL4 expression. J Exp Bot. 2023;74(12):3579–94.

    PubMed 

    Google Scholar 

  • Zeng R, Li Z, Shi Y, Fu D, Yin P, Cheng J, et al. Natural variation in a type-A response regulator confers maize chilling tolerance. Nat Commun. 2021;12(1):4713.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hahn A, Zimmermann R, Wanke D, Harter K, Edelmann HG. The root cap determines ethylene-dependent growth and development in maize roots. Mol Plant. 2008;1(2):359–67.

    PubMed 

    Google Scholar 

  • Jyoti SD, Azim JB, Robin AH. Genome-wide characterization and expression profiling of EIN3/EIL family genes in Zea mays. Plant Gene. 2021;25: 100270.

    Google Scholar 

  • Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, et al. The Arabidopsis EIN3 binding f-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell. 2007;19(2):509–23.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng Y, Xu P, Li B, Li P, Wen X, An F, et al. Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis. Proc Natl Acad Sci U S A. 2017;114(52):13834–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell. 2012;24(6):2578–95.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang CX, Qi CY, Luo JH, Liu L, He Y, Chen LQ. Characterization of LRL 5 as a key regulator of root hair growth in maize. Plant J. 2019;98(1):71–82.

    PubMed 

    Google Scholar 

  • Li L, Hey S, Liu S, Liu Q, McNinch C, Hu HC, et al. Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Sci Rep. 2016;6(1): 34395.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading