Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I: Attention is all you need. Advances in Neural Information Processing Systems. 2017;30.
Radford A, Metz L, Chintala S: Unsupervised representation learning with deep Convolutional Generative Adversarial Networks.arXiv. 2015.
Devlin J, Chang M-W, Lee K, Toutanova K: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv. 2018.
Radford A, Narasimhan K, Salimans T, Sutskever I: Improving language understanding by generative pre-training. 2018.
Kasneci E, Seßler K, Küchemann S, Bannert M, Dementieva D, Fischer F, Gasser U, Groh G, Günnemann S, Hüllermeier E. ChatGPT for good? On opportunities and challenges of large language models for education. Learn Individ Differ. 2023;103: 102274.
Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW. Large language models in medicine. Nat Med. 2023;29:1930–40.
Google Scholar
Birhane A, Kasirzadeh A, Leslie D, Wachter S. Science in the age of large language models. Nat Rev Phys. 2023;5:277–80.
Teubner T, Flath CM, Weinhardt C, van der Aalst W, Hinz O. Welcome to the era of chatGPT et al. the prospects of large language models. Bus Inf Syst Eng. 2023;65:95–101.
Ji Y, Lotfollahi M, Wolf FA, Theis FJ. Machine learning for perturbational single-cell omics. Cell Syst. 2021;12:522–37.
Google Scholar
Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation machine learning for biological networks. Cell. 2018;173:1581–92.
Google Scholar
Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, Hill MC, Mantineo H, Brydon EM, Zeng Z, Liu XS, Ellinor PT. Transfer learning enables predictions in network biology. Nature. 2023. https://doi.org/10.1038/s41586-023-06139-9.
Google Scholar
Cui H, Wang C, Maan H, Wang B: scGPT: towards building a foundation model for single-cell multi-omics using generative AI. bioRxiv. 2023:2023.2004.2030.538439.
Yang F, Wang W, Wang F, Fang Y, Tang D, Huang J, Lu H, Yao J. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat Mach Intell. 2022;4:852–66.
Cui H, Wang C, Maan H, Duan N, Wang B: scFormer: a universal representation learning approach for single-cell data using transformers. bioRxiv; 2022.
Wei X, Dong J, Wang F. Scpregan, a deep generative model for predicting the response of single-cell expression to perturbation. Bioinformatics. 2022;38:3377–84.
Google Scholar
Hengshi Y, Joshua DW: PerturbNet predicts single-cell responses to unseen chemical and genetic perturbations.oRxiv, 2022;2022.2007.2020.500854.
Lotfollahi M, Wolf FA, Theis FJ. Scgen predicts single-cell perturbation responses. Nat Methods. 2019;16:715–21.
Google Scholar
Yusuf R, Kexin H, Jure L: GEARS: predicting transcriptional outcomes of novel multi-gene perturbations. bioRxiv, 2022;2022.2007.2012.499735.
Arsham G, Fiona MW, Nicholas ML: Generative adversarial networks simulate gene expression and predict perturbations in single cells. bioRxiv, 2018:262501.
Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017;9:75.
Google Scholar
OpenAI: GPT-4 technical report. arXiv, 2023.
Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, Silverstein MC, Ma’ayan a. Massive mining of publicly available RNA-seq data from human and mouse. Nat Commun. 2018;9: 1366.
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2018;47:D427–32.
Google Scholar
Rand WM. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc. 1971;66:846–50.
Hubert L, Arabie P. Comparing partitions. J Classif. 1985;2(1):193–218.
Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, Ebert D, Feuermann M, Gaudet P, Harris NL, Hill DP, et al. The gene ontology knowledgebase in 2023. Genetics. 2023. https://doi.org/10.1093/genetics/iyad031.
Google Scholar
Oshlack A, Wakefield MJ. Transcript length bias in RNA-seq data confounds systems biology. Biol Direct. 2009;4:14.
Google Scholar
Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5.
Google Scholar
Fowlkes EB, Mallows CL. A method for comparing two hierarchical clusterings. J Am Stat Assoc. 1983;78:553–69.
Strehl A, Ghosh J. Cluster ensembles–-a knowledge reuse framework for combining multiple partitions. J Mach Learn Res. 2002;3:583–617.
Du J, Jia P, Dai Y, Tao C, Zhao Z, Zhi D. Gene2vec: distributed representation of genes based on co-expression. BMC Genomics. 2019;20:82.
Google Scholar
Meilă M: Comparing clusterings by the variation of information. In; Berlin, Heidelberg. Springer Berlin Heidelberg; 2003: 173–187.
Replogle JM, Saunders RA, Pogson AN, Hussmann JA, Lenail A, Guna A, Mascibroda L, Wagner EJ, Adelman K, Lithwick-Yanai G, et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell. 2022;185:2559-2575.e2528.
Google Scholar
Replogle J, Weissman J: “Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq” Replogle et al. 2022 processed Perturb-seq datasets. Figshare+. https://doi.org/10.25452/figshare.plus.20029387.v1; 2022.
Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, Chen Y, Villalta JE, Gilbert LA, Horlbeck MA, Hein MY, et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell. 2016;167:1867-1882.e1821.
Google Scholar
Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, Raychowdhury R, et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell. 2016;167:1853-1866.e1817.
Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.
Google Scholar
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154:442–51.
Google Scholar
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.
Google Scholar
Smith I, Greenside PG, Wadden D, Tirosh I, Natoli T, Narayan R, Root DE, Golub TR, Subramanian A, Doench JG. Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map. PLoS Biol. 2017. https://doi.org/10.1371/journal.pbio.2003213.
Google Scholar
Kingma DP, Welling M: Auto-encoding variational Bayes. arXiv 2013.
Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193:651–69.
Google Scholar
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94.
Google Scholar
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen L-L, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24:430–47.
Google Scholar
Lin X, Lu Y, Zhang C, Cui Q, Tang Y-D, Ji X, Cui C. LncRNAdisease v3.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res. 2023(D1). https://doi.org/10.1093/nar/gkad828.
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI. The disGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48:D845-55.
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, The Gene Ontology Consortium, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.
Zhang G, Song C, Fan S, Yin M, Wang X, Zhang Y, Huang X, Li Y, Shang D, Li C, Wang Q. LncSEA 2.0: an updated platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res. 2023(D1). https://doi.org/10.1093/nar/gkad1008.
The RNAcentral Consortium. RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res. 2018;47:D221-9.
Rai D, Zhou Y, Feng S, Saparov A, Yao Z: A practical review of mechanistic interpretability for transformer-based language models. arXiv 2024.
Schneider J. Explainable generative AI (GenXAI): a survey, conceptualization, and research agenda. Artif Intell Rev. 2024. https://doi.org/10.1007/s10462-024-10916-x.
Google Scholar
Comprehensive review of explainable AI techniques and their applications. 2025.
Bibal A, Cardon R, Alfter D, Wilkens R, Wang X, François T, Watrin P: Is attention explanation? An introduction to the debate. ACL Anthology. 2022;3889–3900.
Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P. Coexpression analysis of human genes across many microarray data sets. Genome Res. 2004;14:1085–94.
Google Scholar
Loshchilov I, Hutter F: Decoupled weight decay regularization. arXiv. 2017.
Kingma DP, Ba J: Adam: a method for stochastic optimization. arXiv. 2014.
Hao M, Gong J, Zeng X, Liu C, Guo Y, Cheng X, Wang T, Ma J, Zhang X, Song L. Large-scale foundation model on single-cell transcriptomics. Nat Methods. 2024;21:1481–91.
Google Scholar
Zheng S, Mingyan F, Andrei S, Marcel ED, Emily CO, Fatemeh V. GeneRAIN dataset: training data, gene embeddings, and model checkpoints. 2024. Zenodo. https://doi.org/10.5281/zenodo.10408774.
Peidli S, Green TD, Shen C, Gross T, Min J, Taylor-King JP, Marks DS, Luna A, Blüthgen N, Sander C: scPerturb: information resource for harmonized single-cell perturbation data. bioRxiv. 2022;2022.2008.2020.504663.
Hugging Face[https://huggingface.co/]
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58.
Ba JL, Kiros JR, Hinton GE: Layer normalization. arXiv. 2016.
Hendrycks D, Gimpel K: Gaussian Error Linear Units (GELUs). arXiv. 2016.
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14: 128.
Google Scholar
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90-97.
Google Scholar
Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, et al. Gene set knowledge discovery with enrichr. Curr Protoc. 2021;1: e90.
Google Scholar
Consortium TEP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
The GTEx Consortium. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.
Google Scholar
Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43:D789-798.
Google Scholar
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41:D991-995.
Google Scholar
Drew K, Wallingford JB, Marcotte EM. Hu.MAP 2.0: integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies. Mol Syst Biol. 2021;17: e10016.
Google Scholar
Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573-3587.e3529.
Google Scholar
Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505–9.
Google Scholar
Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR, Salzman J, Yosef N, Bulthaup B, Brown P, Harper W, et al: The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas ofhumans. Science. 2022;376:eabl4896.
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353-d361.
Google Scholar
Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma’ayan A. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics. 2010;26:2438–44.
Google Scholar
Landrum MJ, Chitipiralla S, Brown GR, Chen C, Gu B, Hart J, Hoffman D, Jang W, Kaur K, Liu C, et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 2020;48(D1):D835–44.
Google Scholar
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.
Google Scholar
Marino GB, Wojciechowicz ML, Clarke DJB, Kuleshov MV, Xie Z, Jeon M, Lachmann A, Ma’ayan A: lncHUB2: aggregated and inferred knowledge about human and mouse lncRNAs. Database (Oxford). 2023;2023.
Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI, et al. Interpro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47(D1):D351–60.
Google Scholar
Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi ML, Bork P, Bridge A, Colwell L, et al. Interpro in 2022. Nucleic Acids Res. 2023;51:D418-d427.
Google Scholar
Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD. Computational prediction of human metabolic pathways from the complete human genome. Genome Biol. 2005;6: R2.
Google Scholar
Tsitsiridis G, Steinkamp R, Giurgiu M, Brauner B, Fobo G, Frishman G, Montrone C, Ruepp A. CORUM: the comprehensive resource of mammalian protein complexes-2022. Nucleic Acids Res. 2023;51:D539-d545.
Google Scholar
Ursu O, Holmes J, Knockel J, Bologa CG, Yang JJ, Mathias SL, Nelson SJ, Oprea TI. DrugCentral: online drug compendium. Nucleic Acids Res. 2017;45:D932-d939.
Google Scholar
Lancichinetti A, Fortunato S, Kertész J. Detecting the overlapping and hierarchical community structure in complex networks. New J Phys. 2009;11: 033015.
Nair V, Hinton GE: Rectified linear units improve restricted boltzmann machines. In ICML’10:Proceedings of the 27th International Conference on International Conference on Machine Learning. Madison, CT, USA: Omnipress; 2010: 807–814
On information and sufficiency on JSTOR. 1951:79–86.
Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, Griss J, Sevilla C, Matthews L, Gong C, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50:D687–92.
Google Scholar
Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.
Google Scholar
Roberts AM, Ware JS, Herman DS, Schafer S, Baksi J, Bick AG, Buchan RJ, Walsh R, John S, Wilkinson S, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci Transl Med. 2015;7: 270ra276.
Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, Groza T, Güneş O, Hall P, Hayhurst J, et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023;51:D977–85.
Google Scholar
York WS, Mazumder R, Ranzinger R, Edwards N, Kahsay R, Aoki-Kinoshita KF, Campbell MP, Cummings RD, Feizi T, Martin M, et al. Glygen: computational and informatics resources for glycoscience. Glycobiology. 2020;30:72–3.
Google Scholar
Dietterich TG: Ensemble methods in machine learning. In Multiple Classifier Systems. Berlin, Germany: Springer; 2000:1–15
Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen. 1936;7:179–88.
Chen T, Guestrin C: XGBoost: a scalable tree boosting system. arXiv. 2016.
Zheng S, Mingyan F, Andrei S, Marcel ED, Emily CO, Fatemeh V. In silico gene perturbation results from GeneRAIN models. 2025. Zenodo. https://doi.org/10.5281/zenodo.15354183.
Zheng S, Mingyan F, Andrei S, Marcel ED, Emily CO, Fatemeh V: GeneRAIN: codebase for transformer-based gene representation learning. v1.0.1 edition: Zenodo. 10.5281/zenodo.16624352; 2025.
Zheng S, Mingyan F, Andrei S, Marcel ED, Emily CO, Fatemeh V:GeneRAIN: GitHub codebase for transformer-based gene representation learning. v1.0.1 edition: Github. https://github.com/suzheng/GeneRAIN; 2025.
An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
Fasolo F, Jin H, Winski G, Chernogubova E, Pauli J, Winter H, Li DY, Glukha N, Bauer S, Metschl S, et al. Long noncoding RNA MIAT controls advanced atherosclerotic lesion formation and plaque destabilization. Circulation. 2021;144:1567–83.
Google Scholar
Ye ZM, Yang S, Xia YP, Hu RT, Chen S, Li BW, Chen SL, Luo XY, Mao L, Li Y, et al. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis. 2019;10:138.
Google Scholar
Zhong X, Ma X, Zhang L, Li Y, Li Y, He R. MIAT promotes proliferation and hinders apoptosis by modulating miR-181b/STAT3 axis in ox-LDL-induced atherosclerosis cell models. Biomed Pharmacother. 2018;97:1078–85.
Google Scholar
Liu H, Li D, Sun L, Qin H, Fan A, Meng L, Graves-Deal R, Glass SE, Franklin JL, Liu Q, et al. Interaction of lncRNA MIR100HG with hnRNPA2B1 facilitates m(6)a-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression. Mol Cancer. 2022;21: 74.
Google Scholar
Peng J, Ma Y, Zhao X, Yang X, Wang H. Constitutive β-catenin overexpression represses lncRNA MIR100HG transcription via HDAC6-mediated histone modification in colorectal cancer. Mol Cancer Res. 2022;20:949–59.
Google Scholar
Lei R, Feng L, Hong D. < ELFN1-AS1 > accelerates the proliferation and migration of colorectal cancer via regulation of miR-4644/< TRIM44 > axis. Cancer Biomark. 2020;27:433–43.
Google Scholar
Li C, Hong S, Hu H, Liu T, Yan G, Sun D. MYC-induced upregulation of Lncrna ELFN1-AS1 contributes to tumor growth in colorectal cancer via epigenetically silencing TPM1. Mol Cancer Res. 2022;20:1697–708.
Google Scholar
Wu F, Zhang W, Wei H, Ma H, Leng G, Zhang Y. LncRNA ELFN1-AS1 promotes proliferation, migration and invasion and suppresses apoptosis in colorectal cancer cells by enhancing G6PD activity. Acta Biochim Biophys Sin (Shanghai). 2023;55:649–60.
Google Scholar
Zhai LQ, Wang XX, Qu CX, Yang LZ, Jia CM, Shi XC. A long non-coding RNA, ELFN1-AS1, sponges miR-1250 to upregulate MTA1 to promote cell proliferation, migration and invasion, and induce apoptosis in colorectal cancer. Eur Rev Med Pharmacol Sci. 2021;25:4655–67.
Google Scholar
Wu R, Li L, Bai Y, Yu B, Xie C, Wu H, Zhang Y, Huang L, Yan Y, Li X, Lin C. The long noncoding RNA LUCAT1 promotes colorectal cancer cell proliferation by antagonizing nucleolin to regulate MYC expression. Cell Death Dis. 2020;11:908.
Google Scholar
Zhou Q, Hou Z, Zuo S, Zhou X, Feng Y, Sun Y, Yuan X. Lucat1 promotes colorectal cancer tumorigenesis by targeting the ribosomal protein L40-MDM2-p53 pathway through binding with UBA52. Cancer Sci. 2019;110:1194–207.
Google Scholar
Da C, Zhan Y, Li Y, Tan Y, Li R, Wang R. The expression and significance of HOX transcript antisense RNA and epithelial-mesenchymal transition-related factors in esophageal squamous cell carcinoma. Mol Med Rep. 2017;15:1853–62.
Google Scholar
Wang AH, Tan P, Zhuang Y, Zhang XT, Yu ZB, Li LN. Down-regulation of long non-coding RNA HOTAIR inhibits invasion and migration of oesophageal cancer cells via up-regulation of microRNA-204. J Cell Mol Med. 2019;23:6595–610.
Google Scholar
Wang W, He X, Zheng Z, Ma X, Hu X, Wu D, Wang M. Serum HOTAIR as a novel diagnostic biomarker for esophageal squamous cell carcinoma. Mol Cancer. 2017;16:75.
Google Scholar
Wang W, Wu D, He X, Hu X, Hu C, Shen Z, Lin J, Pan Z, He Z, Lin H, Wang M. CCL18-induced HOTAIR upregulation promotes malignant progression in esophageal squamous cell carcinoma through the miR-130a-5p-ZEB1 axis. Cancer Lett. 2019;460:18–28.
Google Scholar
Xu F, Zhang J. Long non-coding RNA HOTAIR functions as miRNA sponge to promote the epithelial to mesenchymal transition in esophageal cancer. Biomed Pharmacother. 2017;90:888–96.
Google Scholar
Zhang S, Zheng F, Zhang L, Huang Z, Huang X, Pan Z, Chen S, Xu C, Jiang Y, Gu S, et al. Lncrna HOTAIR-mediated MTHFR methylation inhibits 5-fluorouracil sensitivity in esophageal cancer cells. J Exp Clin Cancer Res. 2020;39:131.
Google Scholar
Wang G, Zhao W, Gao X, Zhang D, Li Y, Zhang Y, Li W. HNF1A-AS1 promotes growth and metastasis of esophageal squamous cell carcinoma by sponging miR-214 to upregulate the expression of SOX-4. Int J Oncol. 2017;51:657–67.
Google Scholar
Wang Z, Huang YF, Yu L, Jiao Y. Sh-HNF1A-AS1 reduces the epithelial-mesenchymal transition and stemness of esophageal cancer cells. Neoplasma. 2022;69:560–70.
Google Scholar
Yang X, Song JH, Cheng Y, Wu W, Bhagat T, Yu Y, Abraham JM, Ibrahim S, Ravich W, Roland BC, et al. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut. 2014;63:881–90.
Google Scholar
Chen B, Wang W, Lin F, Shi S, Ou S, Yu Y. LINC00470 represses cell autophagy and cisplatin sensitivity of glioma via suppressing PTEN expression. Folia Neuropathol. 2023;61:88–96.
Google Scholar
Liu C, Fu H, Liu X, Lei Q, Zhang Y, She X, Liu Q, Liu Q, Sun Y, Li G, Wu M. LINC00470 coordinates the epigenetic regulation of ELFN2 to distract GBM cell autophagy. Mol Ther. 2018;26:2267–81.
Google Scholar
Liu C, Zhang Y, She X, Fan L, Li P, Feng J, Fu H, Liu Q, Liu Q, Zhao C, et al. A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. J Hematol Oncol. 2018;11:77.
Google Scholar
Ma W, Zhou Y, Liu M, Qin Q, Cui Y. Long non-coding RNA LINC00470 in serum derived exosome: a critical regulator for proliferation and autophagy in glioma cells. Cancer Cell Int. 2021;21:149.
Google Scholar
Wu C, Su J, Long W, Qin C, Wang X, Xiao K, Li Y, Xiao Q, Wang J, Pan Y, Liu Q. LINC00470 promotes tumour proliferation and invasion, and attenuates chemosensitivity through the LINC00470/miR-134/Myc/ABCC1 axis in glioma. J Cell Mol Med. 2020;24:12094–106.
Google Scholar
Li J, Tong Y, Zhou Y, Han Z, Wang X, Ding T, Qu Y, Zhang Z, Chang C, Zhang X, Qiu C. LncRNA KCNQ1OT1 as a miR-26a-5p sponge regulates ATG12-mediated cardiomyocyte autophagy and aggravates myocardial infarction. Int J Cardiol. 2021;338:14–23.
Google Scholar
Liao B, Dong S, Xu Z, Gao F, Zhang S, Liang R. LncRNA Kcnq1ot1 renders cardiomyocytes apoptosis in acute myocardial infarction model by up-regulating Tead1. Life Sci. 2020;256: 117811.
Google Scholar
Tan T, Tu L, Yu Y, He M, Zhou X, Yang L. Mechanisms by which silencing long-stranded noncoding RNA KCNQ1OT1 alleviates myocardial ischemia/reperfusion injury (MI/RI)-induced cardiac injury via miR-377-3p/HMOX1. BMC Cardiovasc Disord. 2024;24:19.
Google Scholar
Han Y, Dong B, Chen M, Yao C. LncRNA H19 suppresses pyroptosis of cardiomyocytes to attenuate myocardial infarction in a PBX3/CYP1B1-dependent manner. Mol Cell Biochem. 2021;476:1387–400.
Google Scholar
Hobuß L, Foinquinos A, Jung M, Kenneweg F, Xiao K, Wang Y, Zimmer K, Remke J, Just A, Nowak J, et al. Pleiotropic cardiac functions controlled by ischemia-induced lncRNA H19. J Mol Cell Cardiol. 2020;146:43–59.
Google Scholar
Xie L, He J, Mao J, Zhang Q, Bo H, Li L. The interplay between H19 and HIF-1α in mitochondrial dysfunction in myocardial infarction. Cell Signal. 2023;112: 110919.
Google Scholar
Zhang BF, Jiang H, Chen J, Hu Q, Yang S, Liu XP, Liu G. LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. J Cell Mol Med. 2020;24:1099–115.
Google Scholar
Chen Z, Chen X, Lei T, Gu Y, Gu J, Huang J, Lu B, Yuan L, Sun M, Wang Z. Integrative analysis of NSCLC identifies LINC01234 as an oncogenic lncRNA that interacts with HNRNPA2B1 and regulates miR-106b biogenesis. Mol Ther. 2020;28:1479–93.
Google Scholar
Chen Z, Chen X, Lu B, Gu Y, Chen Q, Lei T, Nie F, Gu J, Huang J, Wei C, et al. Up-regulated LINC01234 promotes non-small-cell lung cancer cell metastasis by activating VAV3 and repressing BTG2 expression. J Hematol Oncol. 2020;13:7.
Google Scholar
Wei W, Wang C, Zhang J, Wang L, Wei L, Huang H. The role of the LINC01234/miR-433-3p/GRB2 cerna network in NSCLC cell malignant proliferation. Comb Chem High Throughput Screen. 2023;26:1836–47.
Google Scholar
Xie JJ, Guo QY, Jin JY, Jin D. SP1-mediated overexpression of lncRNA LINC01234 as a ceRNA facilitates non-small-cell lung cancer progression via regulating OTUB1. J Cell Physiol. 2019;234:22845–56.
Google Scholar
Hua Q, Jin M, Mi B, Xu F, Li T, Zhao L, Liu J, Huang G. LINC01123, a c-Myc-activated long non-coding RNA, promotes proliferation and aerobic glycolysis of non-small cell lung cancer through miR-199a-5p/c-Myc axis. J Hematol Oncol. 2019;12:91.
Google Scholar
Wang H, He D. LINC01123 acts as an oncogenic driver in lung adenocarcinoma by regulating the miR-4766-5p/PYCR1 axis. Histol Histopathol. 2023;38:1475–86.
Google Scholar
Jiang N, Wang X, Xie X, Liao Y, Liu N, Liu J, Miao N, Shen J, Peng T. LncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett. 2017;405:46–55.
Google Scholar
Wang Y, Zeng X, Wang N, Zhao W, Zhang X, Teng S, Zhang Y, Lu Z. Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma. Mol Cancer. 2018;17:89.
Google Scholar
Zhang W, Li JZ, Tai QY, Tang JJ, Huang YH, Gao SB. LncRNA DANCR regulates osteosarcoma migration and invasion by targeting miR-149/MSI2 axis. Eur Rev Med Pharmacol Sci. 2020;24:6551–60.
Google Scholar
Hu CY, Chen J, Qin XH, You P, Ma J, Zhang J, Zhang H, Xu JD. Long non-coding RNA NORAD promotes the prostate cancer cell extracellular vesicle release via microRNA-541-3p-regulated PKM2 to induce bone metastasis of prostate cancer. J Exp Clin Cancer Res. 2021;40:98.
Google Scholar
Zhang H, Guo H. Long non-coding RNA NORAD induces cell proliferation and migration in prostate cancer. J Int Med Res. 2019;47:3898–904.
Google Scholar
Hui Y, Yang Y, Li D, Wang J, Di M, Zhang S, Wang S. LncRNA FEZF1-AS1 modulates cancer stem cell properties of human gastric cancer through miR-363-3p/HMGA2. Cell Transplant. 2020;29:963689720925059.
Google Scholar
Liu YW, Xia R, Lu K, Xie M, Yang F, Sun M, De W, Wang C, Ji G. LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-mediated H3K4me2 demethylation. Mol Cancer. 2017;16:39.
Google Scholar
Wu X, Zhang P, Zhu H, Li S, Chen X, Shi L. Long noncoding RNA FEZF1-AS1 indicates a poor prognosis of gastric cancer and promotes tumorigenesis via activation of Wnt signaling pathway. Biomed Pharmacother. 2017;96:1103–8.
Google Scholar
Ma JX, Yang YL, He XY, Pan XM, Wang Z, Qian YW. Long noncoding RNA MNX1-AS1 overexpression promotes the invasion and metastasis of gastric cancer through repressing CDKN1A. Eur Rev Med Pharmacol Sci. 2019;23:4756–62.
Google Scholar
Shuai Y, Ma Z, Liu W, Yu T, Yan C, Jiang H, Tian S, Xu T, Shu Y. TEAD4 modulated lncRNA MNX1-AS1 contributes to gastric cancer progression partly through suppressing BTG2 and activating BCL2. Mol Cancer. 2020;19:6.
Google Scholar
Zhang W, Huang L, Lu X, Wang K, Ning X, Liu Z. Upregulated expression of MNX1-AS1 long noncoding RNA predicts poor prognosis in gastric cancer. Bosn J Basic Med Sci. 2019;19:164–71.
Google Scholar