Glover, V. Prenatal stress and its effects on the fetus and the child: Possible underlying biological mechanisms. In Perinatal Programming of Neurodevelopment (ed. Antonelli, MC.) 269–283. (New York, NY: Springer, 2015). https://doi.org/10.1007/978-1-4939-1372-5_13
Welberg, L. & a. M, Seckl JR.,. Prenatal Stress, Glucocorticoids and the Programming of the Brain. J. Neuroendocrinol. 13, 113–128. https://doi.org/10.1111/j.1365-2826.2001.00601.x (2001).
Google Scholar
Henriksen, R., Rettenbacher, S. & Groothuis, T. G. G. Prenatal stress in birds: Pathways, effects, function and perspectives. Neurosci. Biobehav. Rev. 35, 1484–1501. https://doi.org/10.1016/j.neubiorev.2011.04.010 (2011).
Google Scholar
Van den Bergh, B. R. H. et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev. 117, 26–64. https://doi.org/10.1016/j.neubiorev.2017.07.003 (2020).
Google Scholar
Weinstock, M. The long-term behavioural consequences of prenatal stress. Neurosci. Biobehav. Rev. 32, 1073–1086. https://doi.org/10.1016/j.neubiorev.2008.03.002 (2008).
Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445. https://doi.org/10.1038/nrn2639 (2009).
Google Scholar
Schoech, S. J., Rensel, M. A. & Heiss, R. S. Short- and long-term effects of developmental corticosterone exposure on avian physiology, behavioral phenotype, cognition, and fitness: A review. Curr. Zool. 57, 514–530. https://doi.org/10.1093/czoolo/57.4.514 (2011).
Google Scholar
Westneat, D. F., Wright, J. & Dingemanse, N. J. The biology hidden inside residual within-individual phenotypic variation. Biol. Rev. 90, 729–743. https://doi.org/10.1111/brv.12131 (2015).
Google Scholar
Stamps, J. A., Briffa, M. & Biro, P. A. Unpredictable animals: Individual differences in intraindividual variability (IIV). Anim. Behav. 83, 1325–1334. https://doi.org/10.1016/j.anbehav.2012.02.017 (2012).
Google Scholar
Biro, P. A. & Adriaenssens, B. Predictability as a personality trait: Consistent differences in intraindividual behavioral variation. Am. Nat. 182, 621–629. https://doi.org/10.1086/673213 (2013).
Google Scholar
Cleasby, I. R., Nakagawa, S. & Schielzeth, H. Quantifying the predictability of behaviour: Statistical approaches for the study of between-individual variation in the within-individual variance. Method. Ecol. Evol. 6, 27–37. https://doi.org/10.1111/2041-210X.12281 (2015).
Google Scholar
Westneat, D. F. et al. Multiple aspects of plasticity in clutch size vary among populations of a globally distributed songbird. J. Anim. Ecol. 83, 876–887. https://doi.org/10.1111/1365-2656.12191 (2014).
Google Scholar
Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783. https://doi.org/10.1016/j.anbehav.2008.12.022 (2009).
Google Scholar
Westneat, D. F., Hatch, M. I., Wetzel, D. P. & Ensminger, A. L. Individual variation in parental care reaction norms: Integration of personality and plasticity. Am. Nat. 178, 652–667. https://doi.org/10.1086/662173 (2011).
Google Scholar
Briffa, M. Plastic proteans: Reduced predictability in the face of predation risk in hermit crabs. Biol. Lett. 9, 20130592. https://doi.org/10.1098/rsbl.2013.0592 (2013).
Google Scholar
Kermany, N., Martin, J. G. A. & Careau, V. Individual (co)variation in locomotor activity, temporal plasticity, and predictability within a novel environment. Behav. Ecol. Sociobiol. 77, 93. https://doi.org/10.1007/s00265-023-03365-z (2023).
Google Scholar
Chang, C., Teo, H. Y., Norma-Rashid, Y. & Li, D. Predator personality and prey behavioural predictability jointly determine foraging performance. Sci. Rep. 7, 40734. https://doi.org/10.1038/srep40734 (2017).
Google Scholar
Highcock, L. & Carter, A. J. Intraindividual variability of boldness is repeatable across contexts in a wild lizard. PLoS ONE https://doi.org/10.1371/journal.pone.0095179 (2014).
Google Scholar
Horváth, G. et al. Roll with the fear: Environment and state dependence of pill bug (Armadillidium vulgare) personalities. Sci. Nat. 106, 7. https://doi.org/10.1007/s00114-019-1602-4 (2019).
Google Scholar
Beyts, C., Martin, JGA., Colegrave, N., Walsh, P. Food availability early in life impacts among and within individual variation in behaviour. 2023.02.23.529667. https://doi.org/10.1101/2023.02.23.529667 (2023).
Winter, G., Wirsching, L. & Schielzeth, H. Condition dependence of (un)predictability in escape behavior of a grasshopper species. Behav. Ecol. Off. J. Int. Soc. Behav. Ecol. 34, 741–750. https://doi.org/10.1093/beheco/arad047 (2023).
Google Scholar
Cockrem, J. F. Stress, corticosterone responses and avian personalities. J. Ornithol. 148, 169–178. https://doi.org/10.1007/s10336-007-0175-8 (2007).
Google Scholar
Henriksen, R., Groothuis, T. G. & Rettenbacher, S. Elevated plasma corticosterone decreases yolk testosterone and progesterone in chickens: Linking maternal stress and hormone-mediated maternal effects. PLoS ONE 6, e23824. https://doi.org/10.1371/journal.pone.0023824 (2011).
Google Scholar
Henriksen, R., Rettenbacher, S. & Groothuis, T. G. G. Maternal corticosterone elevation during egg formation in chickens (Gallus gallus domesticus) influences offspring traits, partly via prenatal undernutrition. Gen. Comp. Endocrinol. 191, 83–91. https://doi.org/10.1016/j.ygcen.2013.05.028 (2013).
Google Scholar
Henriksen, R. et al. Intra-individual behavioural variability: A trait under genetic control. Int. J. Mol. Sci. 21, 8069. https://doi.org/10.3390/ijms21218069 (2020).
Google Scholar
Stingo-Hirmas, D. et al. Proportional cerebellum size predicts fear habituation in chickens. Front. Physiol. https://doi.org/10.3389/fphys.2022.826178 (2022).
Google Scholar
Cottle, JJ., Boivin, J., Domar, AD. The effects of stress on conception and pregnancy. In How to Improve Preconception Health to Maximize IVF Success (eds Kovacs, G., Norman, R.) 18–29 (Cambridge: Cambridge University Press, 2018) https://doi.org/10.1017/9781316727119.003
Geraghty, AC., Kaufer, D. Glucocorticoid regulation of reproduction. In Glucocorticoid Signaling: From Molecules to Mice to Man (eds Wang, J.C.& Harris, C.) 253–278 (New York, NY: Springer 2015). (https://doi.org/10.1007/978-1-4939-2895-8_11)
Odihambo Mumma, J., Thaxton, J. P., Vizzier-Thaxton, Y. & Dodson, W. L. Physiological stress in laying hens1. Poult. Sci. 85, 761–769. https://doi.org/10.1093/ps/85.4.761 (2006).
Google Scholar
Shini, S., Shini, A. & Huff, G. R. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiol. Behav. 98, 73–77. https://doi.org/10.1016/j.physbeh.2009.04.012 (2009).
Google Scholar
Adriaensen, H. et al. How egg storage duration prior to incubation impairs egg quality and chicken embryonic development: Contribution of imaging technologies. Front. Physiol. https://doi.org/10.3389/fphys.2022.902154 (2022).
Google Scholar
Fasenko, G. M. Egg storage and the embryo. Poult. Sci. 86, 1020–1024. https://doi.org/10.1093/ps/86.5.1020 (2007).
Google Scholar
King ori, A. Review of the factors that influence egg fertility and hatchabilty in poultry. Int. J. Poult. Sci. 10, 483–492. https://doi.org/10.3923/ijps.2011.483.492 (2011).
Google Scholar
Rocha, J. S. R. et al. Negative effects of fertile egg storage on the egg and the embryo and suggested hatchery management to minimise such problems. World. Poult. Sci. J. 69, 35–44. https://doi.org/10.1017/S0043933913000044 (2013).
Google Scholar
Gilbert, A. B., Perry, M. M., Waddington, D. & Hardie, M. A. Role of atresia in establishing the follicular hierarchy in the ovary of the domestic hen (Gallus domesticus). J. Reprod. Fertil. 69, 221–227. https://doi.org/10.1530/jrf.0.0690221 (1983).
Google Scholar
Johnson, AL. Chapter 28 – Reproduction in the female. In Sturkie’s Avian Physiology 4th edn, (ed. Scanes, C.G.) 635–665 (San Diego: Academic Press 2015). https://doi.org/10.1016/B978-0-12-407160-5.00028-2
Lovell, T., Gladwell, R., Groome, N. & Knight, P. Ovarian follicle development in the laying hen is accompanied by divergent changes in inhibin A, inhibin B, activin A and follistatin production in granulosa and theca layers. J. Endocrinol. 177, 45–55. https://doi.org/10.1677/joe.0.1770045 (2003).
Google Scholar
Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 7464–7475 (2023). https://doi.org/10.1109/CVPR52729.2023.00721
R Core Team. R: A Language and Environment for Statistical Computing (2023).
Sturman, O. et al. Deep learning-based behavioral analysis reaches human accuracy and is capable of outperforming commercial solutions. Neuropsychopharmacology 45, 1942–1952. https://doi.org/10.1038/s41386-020-0776-y (2020).
Google Scholar
Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F. & Renzi, P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 134, 49–57. https://doi.org/10.1016/S0166-4328(01)00452-1 (2002).
Google Scholar
Bari, M. S., Allen, S. S., Mesken, J., Cohen-Barnhouse, A. M. & Campbell, D. L. M. Relationship between range use and fearfulness in free-range hens from different rearing enrichments. Animal 11, 300. https://doi.org/10.3390/ani11020300 (2021).
Google Scholar
Campbell, D. L. M. et al. An attention bias test to assess anxiety states in laying hens. PeerJ https://doi.org/10.7717/peerj.7303 (2019).
Google Scholar
Perals, D., Griffin, A. S., Bartomeus, I. & Sol, D. Revisiting the open-field test: What does it really tell us about animal personality?. Anim. Behav. 123, 69–79. https://doi.org/10.1016/j.anbehav.2016.10.006 (2017).
Google Scholar
Balážová, L. & Baranyiová, E. Broiler response to open field test in early ontogeny. Acta Vet. Brno 79, 19–26. https://doi.org/10.2754/avb201079010019 (2010).
Google Scholar
Forkman, B., Boissy, A., Meunier-Salaün, M. C., Canali, E. & Jones, R. B. A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol. Behav. 92, 340–374. https://doi.org/10.1016/j.physbeh.2007.03.016 (2007).
Google Scholar
Nielsen, B. L. Effects of ambient temperature and early open-field response on the behaviour, feed intake and growth of fast- and slow-growing broiler strains. Animal https://doi.org/10.1017/S1751731112000353 (2012).
Google Scholar
Gould, T.D., Dao, D.T., Kovacsics, C.E. The open field test. In Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests (ed Gould, T.D.) 1–20 (Totowa, NJ: Humana Press 2009). https://doi.org/10.1007/978-1-60761-303-9_1
Prut, L. & Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol. 463, 3–33. https://doi.org/10.1016/S0014-2999(03)01272-X (2003).
Google Scholar
Peterson, R. A. Finding optimal normalizing transformations via bestNormalize. R J. 13, 310. https://doi.org/10.32614/RJ-2021-041 (2021).
Google Scholar
Peterson, R. A. & Cavanaugh, J. E. Ordered quantile normalization: A semiparametric transformation built for the cross-validation era. J. Appl. Stat. 47, 2312–2327. https://doi.org/10.1080/02664763.2019.1630372 (2020).
Google Scholar
Lee, Y. & Nelder, J. A. Hierarchical generalized linear models. J. R. Stat. Soc. Ser. B Methodol. 58, 619–656. https://doi.org/10.1111/j.2517-6161.1996.tb02105.x (1996).
Google Scholar
Lee, Y. & Nelder, J. A. Double hierarchical generalized linear models (with discussion). J. R. Stat. Soc. Ser. C Appl. Stat. 55, 139–185. https://doi.org/10.1111/j.1467-9876.2006.00538.x (2006).
Google Scholar
Rönnegård, L., Shen, X. & Alam, M. Hglm: A package for fitting hierarchical generalized linear models. R J. 2, 20–28. https://doi.org/10.32614/rj-2010-009 (2010).
Google Scholar
Lee, Y., Nelder, J. A. & Pawitan, Y. Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood, Second Edition 2nd edn. (Chapman and Hall/CRC, 2018). https://doi.org/10.1201/9781315119953.
Google Scholar
Mitchell, D. J., Fanson, B. G., Beckmann, C. & Biro, P. A. Towards powerful experimental and statistical approaches to study intraindividual variability in labile traits. R. Soc. Open Sci. 3, 160352. https://doi.org/10.1098/rsos.160352 (2016).
Google Scholar
Rönnegård, L., Shen, X., Alam, M. The hglm package ( Version 2 . 0 ). Update , 1–36 (2014).
Glover, V., O’Connor, T. G. & O’Donnell, K. Prenatal stress and the programming of the HPA axis. Neurosci. Biobehav. Rev. 35, 17–22. https://doi.org/10.1016/j.neubiorev.2009.11.008 (2010).
Google Scholar
Bosch, O. J., Krömer, S. A. & Neumann, I. D. Prenatal stress: Opposite effects on anxiety and hypothalamic expression of vasopressin and corticotropin-releasing hormone in rats selectively bred for high and low anxiety. Eur. J. Neurosci. 23, 541–551. https://doi.org/10.1111/j.1460-9568.2005.04576.x (2006).
Google Scholar
Cannizzaro, C. et al. Single, intense prenatal stress decreases emotionality and enhances learning performance in the adolescent rat offspring: Interaction with a brief, daily maternal separation. Behav. Brain Res. 169, 128–136. https://doi.org/10.1016/j.bbr.2005.12.010 (2006).
Google Scholar
Pallarés, M. E., Scacchi Bernasconi, P. A., Feleder, C. & Cutrera, R. A. Effects of prenatal stress on motor performance and anxiety behavior in Swiss mice. Physiol. Behav. 92, 951–956. https://doi.org/10.1016/j.physbeh.2007.06.021 (2007).
Google Scholar
van den Hove, D. L. A. et al. Prenatal restraint stress and long-term affective consequences. Dev. Neurosci. 27, 313–320. https://doi.org/10.1159/000086711 (2005).
Google Scholar
Johnsson, M., Williams, M. J., Jensen, P. & Wright, D. Genetical genomics of behavior: A novel chicken genomic model for anxiety behavior. Genetic 202, 327–340. https://doi.org/10.1534/genetics.115.179010 (2016).
Google Scholar
Terashima, M., Velasco, V. V., Goto, N., Tsudzuki, M. & Ishikawa, A. Differences in innate fear behaviour in native Japanese chickens. Br. Poult. Sci. 64, 448–455. https://doi.org/10.1080/00071668.2023.2207735 (2023).
Google Scholar
Tiemann, I., Becker, S., Büscher, W. & Meuser, V. Exploring animal genetic resources of the domestic chicken and their behavior in the open field. J. Appl. Poult. Res. 31, 100237. https://doi.org/10.1016/j.japr.2022.100237 (2022).
Google Scholar
Tazumi, T. et al. Effects of prenatal maternal stress by repeated cold environment on behavioral and emotional development in the rat offspring. Behav. Brain Res. 162, 153–160. https://doi.org/10.1016/j.bbr.2005.03.006 (2005).
Google Scholar
Davis, K. A., Schmidt, J. B., Doescher, R. M. & Satterlee, D. G. Fear responses of offspring from divergent quail stress response line hens treated with corticosterone during egg formation1. Poult. Sci. 87, 1303–1313. https://doi.org/10.3382/ps.2008-00083 (2008).
Google Scholar
Götz, A. A. & Stefanski, V. Psychosocial maternal stress during pregnancy affects serum corticosterone, blood immune parameters and anxiety behaviour in adult male rat offspring. Physiol. Behav. 90, 108–115. https://doi.org/10.1016/j.physbeh.2006.09.014 (2007).
Google Scholar
Salari, A.-A., Fatehi-Gharehlar, L., Motayagheni, N. & Homberg, J. R. Fluoxetine normalizes the effects of prenatal maternal stress on depression- and anxiety-like behaviors in mouse dams and male offspring. Behav. Brain Res. 311, 354–367. https://doi.org/10.1016/j.bbr.2016.05.062 (2016).
Google Scholar
Vallée, M. et al. Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: Correlation with stress-induced corticosterone secretion. J. Neurosci. 17, 2626–2636. https://doi.org/10.1523/JNEUROSCI.17-07-02626.1997 (1997).
Google Scholar
van Oers, K., de Jong, G., van Noordwijk, A. J., Kempenaers, B. & Drent, P. J. Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour 142, 1185–1206 (2005).
Google Scholar
Martin, J. G. A., Pirotta, E., Petelle, M. B. & Blumstein, D. T. Genetic basis of between-individual and within-individual variance of docility. J. Evol. Biol. 30, 796–805. https://doi.org/10.1111/JEB.13048 (2017).
Google Scholar
Prentice, P. M., Houslay, T. M., Martin, J. G. A. & Wilson, A. J. Genetic variance for behavioural ‘predictability’ of stress response. J. Evol. Biol. 33, 642–652. https://doi.org/10.1111/JEB.13601 (2020).
Google Scholar
Huizink, A. C. & de Rooij, S. R. Prenatal stress and models explaining risk for psychopathology revisited: Generic vulnerability and divergent pathways. Dev. Psychopathol. 30, 1041–1062. https://doi.org/10.1017/S0954579418000354 (2018).
Google Scholar
Klaassen, H. et al. Behavioural ecology meets oncology: Quantifying the recovery of animal behaviour to a transient exposure to a cancer risk factor. Proc. R. Soc. B Biol. Sci. 291, 20232666. https://doi.org/10.1098/rspb.2023.2666 (2024).
Google Scholar
Velasque, M. & Briffa, M. The opposite effects of routine metabolic rate and metabolic rate during startle responses on variation in the predictability of behaviour in hermit crabs. Behaviour 153, 1545–1566. https://doi.org/10.1163/1568539X-00003371 (2016).
Google Scholar
Biro, P. A. et al. Metabolic scope as a proximate constraint on individual behavioral variation: Effects on personality, plasticity, and predictability. Am. Nat. 192, 142–154. https://doi.org/10.1086/697963 (2018).
Google Scholar
Eberle, C., Fasig, T., Brüseke, F. & Stichling, S. Impact of maternal prenatal stress by glucocorticoids on metabolic and cardiovascular outcomes in their offspring: A systematic scoping review. PLoS ONE 16, e0245386. https://doi.org/10.1371/journal.pone.0245386 (2021).
Google Scholar
Westneat, D. F., Stewart, I. R. K. & Hatch, M. I. Complex interactions among temporal variables affect the plasticity of clutch size in a multi-brooded bird. Ecology 90, 1162–1174. https://doi.org/10.1890/08-0698.1 (2009).
Google Scholar
Favati, A., Zidar, J., Thorpe, H., Jensen, P. & Løvlie, H. The ontogeny of personality traits in the red junglefowl, Gallus gallus. Behav. Ecol. 27, 484–493. https://doi.org/10.1093/beheco/arv177 (2016).
Google Scholar
Schuett, W. & Dall, S. R. X. Sex differences, social context and personality in zebra finches, Taeniopygia guttata. Anim. Behav. 77, 1041–1050. https://doi.org/10.1016/j.anbehav.2008.12.024 (2009).
Google Scholar
Strickland, K. & Frère, C. H. Predictable males and unpredictable females: Repeatability of sociability in eastern water dragons. Behav. Ecol. 29, 236–243. https://doi.org/10.1093/beheco/arx148 (2018).
Google Scholar
Brand, J. A. et al. Sex differences in the predictability of risk-taking behavior. Behav. Ecol. 34, 108–116. https://doi.org/10.1093/beheco/arac105 (2023).
Google Scholar
Scherer, U., Kuhnhardt, M. & Schuett, W. Predictability is attractive: Female preference for behaviourally consistent males but no preference for the level of male aggression in a bi-parental cichlid. PLoS ONE 13, e0195766. https://doi.org/10.1371/journal.pone.0195766 (2018).
Google Scholar
Brand, J. A., Aich, U., Yee, W. K. W., Wong, B. B. M. & Dowling, D. K. Sexual selection increases male behavioral consistency in drosophila melanogaster. Am. Nat. 203, 713–725. https://doi.org/10.1086/729600 (2024).
Google Scholar
Jones, K. A., Jackson, A. L. & Ruxton, G. D. Prey jitters; Protean behaviour in grouped prey. Behav. Ecol. 22, 831–836. https://doi.org/10.1093/beheco/arr062 (2011).
Google Scholar
Wolf, M., Van Doorn, G. S. & Weissing, F. J. On the coevolution of social responsiveness and behavioural consistency. Proc. R. Soc. B Biol. Sci. 278, 440–448. https://doi.org/10.1098/rspb.2010.1051 (2010).
Google Scholar
Richardson, G., Dickinson, P., Burman, O. H. P. & Pike, T. W. Unpredictable movement as an anti-predator strategy. Proc. R. Soc. B Biol. Sci. 285, 20181112. https://doi.org/10.1098/rspb.2018.1112 (2018).
Google Scholar
Stingo-Hirmas, Rönnegård, Cunha, Wright, Henriksen Behavioural predictability in chickens in response to anxiogenic stimuli is influenced by maternal corticosterone levels during egg formation. Dryad 10.5061/dryad.k0p2ngfjr (2025).