Balanced chromosomal insertions as the mechanism of recurrent familial microstructural abnormalities: detailed analyses using long-read whole-genome sequencing

  • Weckselblatt B, Rudd MK. Human structural variation: mechanisms of chromosome rearrangements. Trends Genet. 2015;31:587–99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Hemel JO, Eussen HJ. Interchromosomal insertions. Identification of five cases and a review. Hum Genet. 2000;107:415–32.

    PubMed 

    Google Scholar 

  • Kang SH, Shaw C, Ou Z, Eng PA, Cooper ML, Pursley AN, et al. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results. Am J Med Genet A. 2010;152a:1111–26.

    Article 
    PubMed 

    Google Scholar 

  • Madan K, Menko FH. Intrachromosomal insertions: a case report and a review. Hum Genet. 1992;89:1–9.

    Article 
    PubMed 

    Google Scholar 

  • Nowakowska BA, de Leeuw N, Ruivenkamp CA, Sikkema-Raddatz B, Crolla JA, Thoelen R, et al. Parental insertional balanced translocations are an important cause of apparently de novo CNVs in patients with developmental anomalies. Eur J Hum Genet. 2012;20:166–70.

    Article 
    PubMed 

    Google Scholar 

  • Zhang S, Pei Z, Xiao M, Zhou J, Hu B, Zhu S, et al. Comprehensive preimplantation genetic testing for balanced insertional translocation carriers. J Med Genet. 2024;61:794–802.

    Article 
    PubMed 

    Google Scholar 

  • Ryu SW, Yoon JH, Kim DW, Han B, Han H, Han J, et al. Identification of a complex intrachromosomal inverted insertion in the long arm of chromosome 9 as a cause of tuberous sclerosis complex in a Korean family. Mol Genet Genom Med. 2024;12:e2330.

    Article 

    Google Scholar 

  • Yamamoto T, Wilsdon A, Joss S, Isidor B, Erlandsson A, Suri M, et al. An emerging phenotype of Xq22 microdeletions in females with severe intellectual disability, hypotonia and behavioral abnormalities. J Hum Genet. 2014;59:300–6.

    Article 
    PubMed 

    Google Scholar 

  • Yamamoto T, Shimojima K, Shimada S, Yokochi K, Yoshitomi S, Yanagihara K, et al. Clinical impacts of genomic copy number gains at Xq28. Hum Genome Var. 2014;1:14001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shimojima K, Sugiura C, Takahashi H, Ikegami M, Takahashi Y, Ohno K, et al. Genomic copy number variations at 17p13.3 and epileptogenesis. Epilepsy Res. 2010;89:303–9.

    Article 
    PubMed 

    Google Scholar 

  • Imaizumi T, Yamamoto-Shimojima K, Yanagishita T, Ondo Y, Nishi E, Okamoto N, et al. Complex chromosomal rearrangements of human chromosome 21 in a patient manifesting clinical features partially overlapped with that of Down syndrome. Hum Genet. 2020;139:1555–63.

    Article 
    PubMed 

    Google Scholar 

  • Hastings R, Moore S, Chia N. An international system for human cytogenomic nomenclature. Basel: Karger; 2024.

  • Burssed B, Zamariolli M, Bellucco FT, Melaragno MI. Mechanisms of structural chromosomal rearrangement formation. Mol Cytogenet. 2022;15:23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atack E, Fairtlough H, Smith K, Balasubramanian M. A novel (paternally inherited) duplication 13q31.3q32.3 in a 12-year-old patient with facial dysmorphism and developmental delay. Mol Syndromol. 2014;5:245–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fritz B, Müller-Navia J, Hillig U, Köhler M, Aslan M, Rehder H. Trisomy 2q35-q37 due to insertion of 2q material into 17q25: clinical, cytogenetic, and molecular cytogenetic characterization. Am J Med Genet. 1999;87:297–301.

    Article 
    PubMed 

    Google Scholar 

  • Liehr T, Schreyer I, Kuechler A, Manolakos E, Singer S, Dufke A, et al. Parental origin of deletions and duplications – about the necessity to check for cryptic inversions. Mol Cytogenet. 2018;11:20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shimada S, Shimojima K, Okamoto N, Sangu N, Hirasawa K, Matsuo M, et al. Microarray analysis of 50 patients reveals the critical chromosomal regions responsible for 1p36 deletion syndrome-related complications. Brain Dev. 2015;37:515–26.

    Article 
    PubMed 

    Google Scholar 

  • Domínguez MG, Rivera H, Aguilar-Lemarroy A, Jave-Suarez LF, Ramírez-Velazco A, González-Ramos IA, et al. Two familial intrachromosomal insertions with maternal dup(6)(p22.3p25.3) or dup(2)(q24.2q32.1) in recombinant offspring. Clin Dysmorphol. 2017;26:209–16.

    Article 
    PubMed 

    Google Scholar 

  • Hegmann KM, Spikes AS, Orr-Urtreger A, Shaffer LG. Segregation of a paternal insertional translocation results in partial 4q monosomy or 4q trisomy in two siblings. Am J Med Genet. 1996;61:10–15.

    Article 
    PubMed 

    Google Scholar 

  • Collinson MN, Roberts SE, Crolla JA, Dennis NR. A familial balanced inverted insertion ins(15)(q15q13q11.2) producing Prader-Willi syndrome, Angelman syndrome and duplication of 15q11.2-q13 in a single family: Importance of differentiation from a paracentric inversion. Am J Med Genet A. 2004;126a:27–32.

    Article 
    PubMed 

    Google Scholar 

  • Blanchard M, Dubourg C, Pasquier L, Odent S, Lucas J, Quélin C, et al. Postnatal diagnosis of 9q interstitial imbalances involving PTCH1, resulting from a familial intrachromosomal insertion. Eur J Med Genet. 2014;57:195–9.

    Article 
    PubMed 

    Google Scholar 

  • Ardalan A, Prieur M, Choiset A, Turleau C, Goutieres F, Girard-Orgeolet S. Intrachromosomal insertion mimicking a pericentric inversion: molecular cytogenetic characterization of a three break rearrangement of chromosome 20. Am J Med Genet A. 2005;138a:288–93.

    Article 
    PubMed 

    Google Scholar 

  • Dong Z, Chau MHK, Zhang Y, Dai P, Zhu X, Leung TY, et al. Deciphering the complexity of simple chromosomal insertions by genome sequencing. Hum Genet. 2021;140:361–80.

    Article 
    PubMed 

    Google Scholar 

  • Carvalho CM, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet. 2016;17:224–38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu S, Szafranski P, Akdemir ZC, Yuan B, Cooper ML, Magriñá MA, et al. Mechanisms for complex chromosomal insertions. PLoS Genet. 2016;12:e1006446.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kato T, Ouchi Y, Inagaki H, Makita Y, Mizuno S, Kajita M, et al. Genomic characterization of chromosomal insertions: insights into the mechanisms underlying chromothripsis. Cytogenet Genome Res. 2017;153:1–9.

    Article 
    PubMed 

    Google Scholar 

  • Continue Reading