Anderson M, Ljungqvist G, van Kessel R, Saint V, Mossialos E. The socioeconomic drivers and impacts of antimicrobial resistance (AMR). In: Panteli D, North J, Jackson L, editors. Implications for policy and research. Copenhagen: WHO Regional Office for Europe. Licence: CC BY-NC-SA 3.0 IGO; 2024.
Blumenthal KG, Peter JG, Trubiano JA, Phillips EJ. Antibiotic allergy. Lancet. 2019;393:183–98. https://doi.org/10.1016/S0140-6736(18)32218-9.
Google Scholar
Morales-Alvarez MC. Nephrotoxicity of antimicrobials and antibiotics. Adv Chronic Kidney Dis. 2020;27:31–7. https://doi.org/10.1053/j.ackd.2019.08.001.
Google Scholar
Kesavelu D, Jog P. Current understanding of antibiotic-associated dysbiosis and approaches for its management. Ther Adv Infect Dis. 2023. https://doi.org/10.1177/20499361231154443.
Google Scholar
Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387:176–87. https://doi.org/10.1016/S0140-6736(15)00473-0.
Google Scholar
Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51. https://doi.org/10.1038/nrmicro3380.
Google Scholar
Byrne MK, Miellet S, McGlinn A, Fish J, Meedya S, Reynolds N, et al. The drivers of antibiotic use and misuse: the development and investigation of a theory driven community measure. BMC Public Health. 2019;19:1425. https://doi.org/10.1186/s12889-019-7796-8.
Google Scholar
WHO. WHO global principles for the containment of antimicrobial resistance in animals intended for food: report of a WHO consultation with the participation of the Food and Agriculture Organization of the United Nations and the Offic [Internet]. Geneva, Switzerland: World Health Organization. 2000. Available from: https://iris.who.int/handle/10665/68931 [Accessed 2025-01-12].
Bengtsson B, Greko C. Antibiotic resistance—consequences for animal health, welfare, and food production. Ups J Med Sci. 2014;119:96–102. https://doi.org/10.3109/03009734.2014.901445.
Google Scholar
Naghavi M, Vollset SE, Ikuta KS, Swetschinski LR, Gray AP, Wool EE, et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404:1199–226. https://doi.org/10.1016/S0140-6736(24)01867-1.
Google Scholar
Adebisi YA. Balancing the risks and benefits of antibiotic use in a globalized world: the ethics of antimicrobial resistance. Glob Health. 2023;19:27. https://doi.org/10.1186/s12992-023-00930-z.
Google Scholar
Poudel AN, Zhu S, Cooper N, Little P, Tarrant C, Hickman M, et al. The economic burden of antibiotic resistance: A systematic review and meta-analysis. Karunasagar I. Editor PLoS One. 2023;18:e0285170. https://doi.org/10.1371/journal.pone.0285170.
Google Scholar
Whittaker A, Do TT, Davis MDM, Barr J. AMR survivors? Chronic living with antimicrobial resistant infections. Glob Public Health. 2023. https://doi.org/10.1080/17441692.2023.2217445.
Google Scholar
Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A, Mahmood KA, et al. Antimicrobial resistance: impacts, challenges, and future prospects. J Med Surg Public Health. 2024;2: 100081. https://doi.org/10.1016/j.glmedi.2024.100081.
Google Scholar
WHO. Fact sheet – One Health [Internet]. Available from: https://www.who.int/news-room/fact-sheets/detail/one-health [Accessed: 2025-01-12].
Pokharel S, Shrestha P, Adhikari B. Antimicrobial use in food animals and human health: time to implement ‘one health’ approach. Antimicrob Resist Infect Control. 2020;9:181. https://doi.org/10.1186/s13756-020-00847-x.
Google Scholar
ECDC EFSA. Antimicrobial consumption and resistance in bacteria from humans and food-producing animals. EFSA J. 2024;22:e8589. https://doi.org/10.2903/j.efsa.2024.8589.
Google Scholar
Chantziaras I, Boyen F, Callens B, Dewulf J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J Antimicrob Chemother. 2014;69:827–34. https://doi.org/10.1093/jac/dkt443.
Google Scholar
Roth N, Käsbohrer A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: a global overview. Poult Sci. 2019;98(4):1791–804. https://doi.org/10.3382/ps/pey539.
Google Scholar
Allel K, Day L, Hamilton A, Lin L, Furuya-Kanamori L, Moore CE, et al. Global antimicrobial-resistance drivers: an ecological country-level study at the human–animal interface. Lancet Planet Heal. 2023;7:e291–303. -5196(23)00026 – 8.
Google Scholar
Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13:1057–98. https://doi.org/10.1016/S1473-3099(13)70318-9.
Google Scholar
Jin M, Osman M, Green BA, Yang Y, Ahuja A, Lu Z, et al. Evidence for the transmission of antimicrobial resistant bacteria between humans and companion animals: a scoping review. One Health. 2023;17: 100593. https://doi.org/10.1016/j.onehlt.2023.100593.
Google Scholar
King C, Smith M, Currie K, Dickson A, Smith F, Davis M, et al. Exploring the behavioural drivers of veterinary surgeon antibiotic prescribing: a qualitative study of companion animal veterinary surgeons in the UK. BMC Vet Res. 2018;14:332. https://doi.org/10.1186/s12917-018-1646-2.
Google Scholar
Servia-Dopazo M, Taracido-Trunk M, Figueiras A. Non-clinical factors determining the prescription of antibiotics by veterinarians: a systematic review. Antibiotics. 2021;10:133. https://doi.org/10.3390/antibiotics10020133.
Google Scholar
Martínez EP, Golding SE, van Rosmalen J, Vinueza-Burgos C, Verbon A, van Schaik G. Antibiotic prescription patterns and non-clinical factors influencing antibiotic use by Ecuadorian veterinarians working on cattle and poultry farms: a cross-sectional study. Prev Vet Med. 2023;213: 105858. https://doi.org/10.1016/j.prevetmed.2023.105858.
Google Scholar
Farrell S, McKernan C, Benson T, Elliott C, Dean M. Understanding farmers’ and veterinarians’ behavior in relation to antimicrobial use and resistance in dairy cattle: a systematic review. J Dairy Sci. 2021;104(4):4584–603. https://doi.org/10.3168/jds.2020-19614.
Google Scholar
Gozdzielewska L, King C, Flowers P, Mellor D, Dunlop P, Price L. Scoping review of approaches for improving antimicrobial stewardship in livestock farmers and veterinarians. Prev Vet Med. 2020;180: 105025. https://doi.org/10.1016/j.prevetmed.2020.105025.
Google Scholar
Haimi M, Brammli-Greenberg S, Waisman Y, Stein N, Baron-Epel O. The role of non-medical factors in physicians’ decision-making process in a pediatric telemedicine service. Health Informatics J. 2020;26:1152–76. https://doi.org/10.1177/1460458219870660.
Google Scholar
Hajjaj F, Salek M, Basra M, Finlay A. Non-clinical influences on clinical decision-making: a major challenge to evidence-based practice. J R Soc Med. 2010;103:178–87. https://doi.org/10.1258/jrsm.2010.100104.
Google Scholar
Sousa A, Rago L, Estrela M, Plácido AI, Nogueira R, Coelho AC et al. Knowledge, attitudes, and practices towards antibiotics prescription by veterinarians: A systematic review [Internet]. PROSPERO CRD42024529868. 2024. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024529868
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.
Google Scholar
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. https://doi.org/10.1186/s13643-016-0384-4.
Google Scholar
Joanna Briggs Institute. ©, Joanna Briggs, Institute. 2020. Checklist for Analytical Cross Sectional Studies [Internet]. 2020. Available from: https://jbi.global/sites/default/files/2021-10/Checklist_for_Analytical_Cross_Sectional_Studies.docx
Teixeira Rodrigues A, Roque F, Falcão A, Figueiras A, Herdeiro MT. Understanding physician antibiotic prescribing behaviour: a systematic review of qualitative studies. Int J Antimicrob Agents. 2013;41:203–12. https://doi.org/10.1016/j.ijantimicag.2012.09.003.
Google Scholar
Lopez-Vazquez P, Vazquez‐Lago JM, Figueiras A. Misprescription of antibiotics in primary care: a critical systematic review of its determinants. J Eval Clin Pract. 2012;18:473–84. https://doi.org/10.1111/j.1365-2753.2010.01610.x.
Google Scholar
Tompson AC, Mateus ALP, Brodbelt DC, Chandler CIR. Understanding antibiotic use in companion animals: a literature review identifying avenues for future efforts. Front Vet Sci. 2021. https://doi.org/10.3389/fvets.2021.719547.
Google Scholar
Busani L, Graziani C, Franco A, Di Egidio A, Binkin N, Battisti A. Survey of the knowledge, attitudes and practice of Italian beef and dairy cattle veterinarians concerning the use of antibiotics. Vet Rec. 2004;155:733–8.
Google Scholar
Hughes LA, Williams N, Clegg P, Callaby R, Nuttall T, Coyne K, et al. Cross-sectional survey of antimicrobial prescribing patterns in UK small animal veterinary practice. Prev Vet Med. 2012;104:309–16. https://doi.org/10.1016/j.prevetmed.2011.12.003.
Google Scholar
Gibbons JF, Boland F, Buckley JF, Butler F, Egan J, Fanning S, et al. Influences on antimicrobial prescribing behaviour of veterinary practitioners in cattle practice in Ireland. Vet Rec. 2013;172:14–14. https://doi.org/10.1136/vr.100782.
Google Scholar
Hughes LA, Pinchbeck G, Callaby R, Dawson S, Clegg P, Williams N. Antimicrobial prescribing practice in UK equine veterinary practice. Equine Vet J. 2013;45:141–7. https://doi.org/10.1111/j.2042-3306.2012.00602.x.
Google Scholar
De Briyne N, Atkinson J, Pokludová L, Borriello SP, Price S. Factors influencing antibiotic prescribing habits and use of sensitivity testing amongst veterinarians in Europe. Vet Rec. 2013;173:475–475. https://doi.org/10.1136/vr.101454.
Google Scholar
Speksnijder DC, Jaarsma DAC, Verheij TJM, Wagenaar JA. Attitudes and perceptions of Dutch veterinarians on their role in the reduction of antimicrobial use in farm animals. Prev Vet Med. 2015;121:365–73. https://doi.org/10.1016/j.prevetmed.2015.08.014.
Google Scholar
Visschers VHM, Backhans A, Collineau L, Loesken S, Nielsen EO, Postma M, et al. A comparison of pig farmers’ and veterinarians’ perceptions and intentions to reduce antimicrobial usage in six European countries. Zoonoses Public Health. 2016;63:534–44. https://doi.org/10.1111/zph.12260.
Google Scholar
Fowler H, Davis MA, Perkins A, Trufan S, Joy C, Buswell M, et al. Survey of veterinary antimicrobial prescribing practices, Washington state 2015. Vet Rec. 2016;179:651–651. https://doi.org/10.1136/vr.103916.
Google Scholar
Postma M, Speksnijder DC, Jaarsma ADC, Verheij TJM, Wagenaar JA, Dewulf J. Opinions of veterinarians on antimicrobial use in farm animals in Flanders and the Netherlands. Vet Rec. 2016;179:68–68. https://doi.org/10.1136/vr.103618.
Google Scholar
Anyanwu MU, Kolade OA. Veterinarians’ perception, knowledge and practices of antibiotic stewardship in Enugu state southeast, Nigeria. Not Sci Biol. 2017;9:321–31. https://doi.org/10.15835/nsb9310061.
Google Scholar
McDougall S, Compton C, Botha N. Factors influencing antimicrobial prescribing by veterinarians and usage by dairy farmers in New Zealand. N Z Vet J. 2017;65:84–92. https://doi.org/10.1080/00480169.2016.1246214.
Google Scholar
Barbarossa A, Rambaldi J, Miraglia V, Giunti M, Diegoli G, Zaghini A. Survey on antimicrobial prescribing patterns in small animal veterinary practice in Emilia Romagna, Italy. Vet Rec. 2017;181:69–69. https://doi.org/10.1136/vr.104128.
Google Scholar
Carmo LP, Nielsen LR, Alban L, da Costa PM, Schüpbach-Regula G, Magouras I. Veterinary expert opinion on potential drivers and opportunities for changing antimicrobial usage practices in livestock in Denmark, Portugal, and Switzerland. Front Vet Sci. 2018. https://doi.org/10.3389/fvets.2018.00029.
Google Scholar
Van Cleven A, Sarrazin S, de Rooster H, Paepe D, Van der Meeren S, Dewulf J. Antimicrobial prescribing behaviour in dogs and cats by Belgian veterinarians. Vet Rec. 2018;182:324–324. https://doi.org/10.1136/vr.104316.
Google Scholar
Coyne LA, Latham SM, Dawson S, Donald IJ, Pearson RB, Smith RF, et al. Antimicrobial use practices, attitudes and responsibilities in UK farm animal veterinary surgeons. Prev Vet Med. 2018;161:115–26. https://doi.org/10.1016/j.prevetmed.2018.10.021.
Google Scholar
Scherpenzeel CGM, Santman-Berends IMGA, Lam TJGM. Veterinarians’ attitudes toward antimicrobial use and selective dry cow treatment in the Netherlands. J Dairy Sci. 2018;101:6336–45. https://doi.org/10.3168/jds.2017-13591.
Google Scholar
Schneider S, Salm F, Vincze S, Moeser A, Petruschke I, Schmücker K, et al. Perceptions and attitudes regarding antibiotic resistance in Germany: a cross-sectoral survey amongst physicians, veterinarians, farmers and the general public. J Antimicrob Chemother. 2018;73:1984–8. https://doi.org/10.1093/jac/dky100.
Google Scholar
Zhuo A, Labbate M, Norris JM, Gilbert GL, Ward MP, Bajorek BV, et al. Opportunities and challenges to improving antibiotic prescribing practices through a one health approach: results of a comparative survey of doctors, dentists and veterinarians in Australia. BMJ Open. 2018;8:e020439. https://doi.org/10.1136/bmjopen-2017-020439.
Google Scholar
Ekakoro JE, Okafor CC. Antimicrobial use practices of veterinary clinicians at a veterinary teaching hospital in the United States. Vet Anim Sci. 2019;7: 100038. https://doi.org/10.1016/j.vas.2018.09.002.
Google Scholar
Eriksen EO, Smed S, Klit KJ, Olsen JE. Factors influencing Danish veterinarians’ choice of antimicrobials prescribed for intestinal diseases in weaner pigs. Vet Rec. 2019;184:798–798. https://doi.org/10.1136/vr.105004.
Google Scholar
Doidge C, Hudson C, Lovatt F, Kaler J. To prescribe or not to prescribe? A factorial survey to explore veterinarians’ decision making when prescribing antimicrobials to sheep and beef farmers in the UK. PLoS One. 2019;14:e0213855. https://doi.org/10.1371/journal.pone.0213855.
Google Scholar
Norris JM, Zhuo A, Govendir M, Rowbotham SJ, Labbate M, Degeling C, et al. Factors influencing the behaviour and perceptions of Australian veterinarians towards antibiotic use and antimicrobial resistance. PLoS One. 2019;14: e0223534. https://doi.org/10.1371/journal.pone.0223534.
Google Scholar
Hopman NEM, Mughini-Gras L, Speksnijder DC, Wagenaar JA, van Geijlswijk IM, Broens EM. Attitudes and perceptions of Dutch companion animal veterinarians towards antimicrobial use and antimicrobial resistance. Prev Vet Med. 2019;170: 104717. https://doi.org/10.1016/j.prevetmed.2019.104717.
Google Scholar
Kumar V, Gupta J, Meena HR. Assessment of awareness about antibiotic resistance and practices followed by veterinarians for judicious prescription of antibiotics: an exploratory study in Eastern Haryana region of India. Trop Anim Health Prod. 2019;51:677–87. https://doi.org/10.1007/s11250-018-1742-0.
Google Scholar
Parkunan T, Ashutosh M, Sukumar B, Chera JS, Ramadas S, Chandrasekhar B, et al. Antibiotic resistance: a cross-sectional study on knowledge, attitude, and practices among veterinarians of Haryana state in India. Vet World. 2019;12:258–65. https://doi.org/10.14202/vetworld.2019.258-265.
Google Scholar
Adekanye UO, Ekiri AB, Galipó E, Muhammad AB, Mateus A, La Ragione RM, et al. Knowledge, attitudes and practices of veterinarians towards antimicrobial resistance and stewardship in Nigeria. Antibiotics. 2020;9:453. https://doi.org/10.3390/antibiotics9080453.
Google Scholar
Chan KW, Bard AM, Adam KE, Rees GM, Morgans L, Cresswell L, et al. Diagnostics and the challenge of antimicrobial resistance: a survey of UK livestock veterinarians’ perceptions and practices. Vet Rec. 2020;187:e125–125. https://doi.org/10.1136/vr.105822.
Google Scholar
Taylor DD, Martin JN, Morley PS, Belk KE, White AE, Scallan Walter EJ. Survey of production animal veterinarians’ prescription practices, factors influencing antimicrobial drug use, and perceptions of and attitudes toward antimicrobial resistance. J Am Vet Med Assoc. 2020;257:87–96. https://doi.org/10.2460/javma.257.1.87.
Google Scholar
Valiakos G, Pavlidou E, Zafeiridis C, Tsokana CN, Del Rio Vilas VJ. Antimicrobial practices among small animal veterinarians in Greece: a survey. One Heal Outlook. 2020;2:7. https://doi.org/10.1186/s42522-020-00013-8.
Google Scholar
Alcantara GLC, Pinello KC, Severo M, Niza-Ribeiro J. Antimicrobial resistance in companion animals – veterinarians’ attitudes and prescription drivers in Portugal. Comp Immunol Microbiol Infect Dis. 2021;76: 101640. https://doi.org/10.1016/j.cimid.2021.101640.
Google Scholar
Galarce N, Arriagada G, Sánchez F, Venegas V, Cornejo J, Lapierre L. Antimicrobial use in companion animals: assessing veterinarians’ prescription patterns through the first National survey in Chile. Animals. 2021;11:348. https://doi.org/10.3390/ani11020348.
Google Scholar
Gómez-Beltrán DA, Schaeffer DJ, Ferguson DC, Monsalve LK, Villar D. Antimicrobial prescribing practices in dogs and cats by Colombian veterinarians in the city of Medellin. Vet Sci. 2021;8: 73. https://doi.org/10.3390/vetsci8050073.
Google Scholar
Llanos-Soto SG, Vezeau N, Wemette M, Bulut E, Greiner Safi A, Moroni P, et al. Survey of perceptions and attitudes of an international group of veterinarians regarding antibiotic use and resistance on dairy cattle farms. Prev Vet Med. 2021;188:105253. https://doi.org/10.1016/j.prevetmed.2020.105253.
Google Scholar
Makita K, Sugahara N, Nakamura K, Matsuoka T, Sakai M, Tamura Y. Current status of antimicrobial drug use in Japanese companion animal clinics and the factors associated with their use. Front Vet Sci. 2021. https://doi.org/10.3389/fvets.2021.705648.
Google Scholar
Mouiche MMM, Mpouam SE, Moffo F, Nkassa CMN, Mbah CK, Mapiefou NP, et al. Prescription pattern of antimicrobial use in small animal veterinary practice in Cameroon. Top Companion Anim Med. 2021;44: 100540. https://doi.org/10.1016/j.tcam.2021.100540.
Google Scholar
Odoi A, Samuels R, Carter CN, Smith J. Antibiotic prescription practices and opinions regarding antimicrobial resistance among veterinarians in Kentucky, USA. PLoS One. 2021;16: e0249653. https://doi.org/10.1371/journal.pone.0249653.
Google Scholar
Ogwuche A, Ekiri AB, Endacott I, Maikai B-V, Idoga ES, Alafiatayo R, et al. Antibiotic use practices of veterinarians and para-veterinarians and the implications for antibiotic stewardship in Nigeria. J S Afr Vet Assoc. 2021. https://doi.org/10.4102/jsava.v92i0.2120.
Google Scholar
Redpath A, Hallowell GD, Bowen IM. Use of aminoglycoside antibiotics in equine clinical practice; a questionnaire-based study of current use. Vet Med Sci. 2021;7:279–88. https://doi.org/10.1002/vms3.382.
Google Scholar
Samuels R, Qekwana DN, Oguttu JW, Odoi A. Antibiotic prescription practices and attitudes towards the use of antimicrobials among veterinarians in the City of Tshwane, South Africa. PeerJ. 2021;9:e10144. https://doi.org/10.7717/peerj.10144.
Google Scholar
Vijay D, Bedi JS, Dhaka P, Singh R, Singh J, Arora AK, et al. Knowledge, attitude, and practices (KAP) survey among veterinarians, and risk factors relating to antimicrobial use and treatment failure in dairy herds of India. Antibiotics. 2021;10:216. https://doi.org/10.3390/antibiotics10020216.
Google Scholar
Wangmo K, Dorji T, Pokhrel N, Dorji T, Dorji J, Tenzin T. Knowledge, attitude, and practice on antibiotic use and antibiotic resistance among the veterinarians and para-veterinarians in Bhutan. PLoS One. 2021;16: e0251327. https://doi.org/10.1371/journal.pone.0251327.
Google Scholar
Wilm J, Svennesen L, Østergaard Eriksen E, Halasa T, Krömker V. Veterinary treatment approach and antibiotic usage for clinical mastitis in Danish dairy herds. Antibiotics. 2021;10:189. https://doi.org/10.3390/antibiotics10020189.
Google Scholar
Taylor DD, Martin JN, Scallan Walter EJ. Survey of companion animal veterinarians’ antimicrobial drug prescription practices and awareness of antimicrobial drug use guidelines in the United States. Zoonoses Public Health. 2022;69:277–85. https://doi.org/10.1111/zph.12915.
Google Scholar
Eltholth M, Govindaraj G, Das B, Shanabhoga MB, Swamy HM, Thomas A, et al. Factors influencing antibiotic prescribing behavior and understanding of antimicrobial resistance among veterinarians in Assam, India. Front Vet Sci. 2022. https://doi.org/10.3389/fvets.2022.864813.
Google Scholar
Grakh K, Mittal D, Kumar T, Thakur S, Panwar D, Singh L, et al. Attitude, opinions, and working preferences survey among pet practitioners relating to antimicrobials in India. Antibiotics. 2022;11:1289. https://doi.org/10.3390/antibiotics11101289.
Google Scholar
Kalam MA, Rahman MS, Alim MA, Shano S, Afrose S, Jalal FA, et al. Knowledge, attitudes, and common practices of livestock and poultry veterinary practitioners regarding the AMU and AMR in Bangladesh. Antibiotics. 2022;11:80. https://doi.org/10.3390/antibiotics11010080.
Google Scholar
Maruve S, Essack S. Knowledge, attitudes, and practices of veterinarians on antibiotic use and resistance and its containment in South Africa. J S Afr Vet Assoc. 2022;93:99–108. https://doi.org/10.36303/JSAVA.164.
Google Scholar
Smith SI, Kwaga JKP, Ngulukun SS, Adedeji A, Jolaiya TF, Ajayi A, et al. Antibiotic prescription practices amongst veterinarians in Nigeria. Res Vet Sci. 2022;152:219–27. https://doi.org/10.1016/j.rvsc.2022.07.028.
Google Scholar
Vidović J, Stojanović D, Cagnardi P, Kladar N, Horvat O, Ćirković I, et al. Farm animal veterinarians’ knowledge and attitudes toward antimicrobial resistance and antimicrobial use in the Republic of Serbia. Antibiotics. 2022;11:64. https://doi.org/10.3390/antibiotics11010064.
Google Scholar
Saman A, Chaudhry M, Ijaz M, Shaukat W, Zaheer MU, Mateus A, et al. Assessment of knowledge, perception, practices and drivers of antimicrobial resistance and antimicrobial usage among veterinarians in Pakistan. Prev Vet Med. 2023;212: 105836. https://doi.org/10.1016/j.prevetmed.2022.105836.
Google Scholar
Wilson A, Mair T, Williams N, McGowan C, Pinchbeck G. Antimicrobial prescribing and antimicrobial resistance surveillance in equine practice. Equine Vet J. 2023;55:494–505. https://doi.org/10.1111/evj.13587.
Google Scholar
Jacobsen ABJE, Damborg P, Hopster-Iversen C. Usage of antimicrobials in equine veterinary practice in Denmark – a case-based survey. J Equine Vet Sci. 2023;126: 104267. https://doi.org/10.1016/j.jevs.2023.104267.
Google Scholar
Kainga H, Phonera MC, Chikowe I, Chatanga E, Nyirongo H, Luwe M, et al. Determinants of knowledge, attitude, and practices of veterinary drug dispensers toward antimicrobial use and resistance in main cities of Malawi: a concern on antibiotic stewardship. Antibiotics. 2023;12:149. https://doi.org/10.3390/antibiotics12010149.
Google Scholar
Yudhanto S, Varga C. Knowledge and attitudes of small animal veterinarians on antimicrobial use practices impacting the selection of antimicrobial resistance in dogs and cats in Illinois, united states: a spatial epidemiological approach. Antibiotics. 2023;12:542. https://doi.org/10.3390/antibiotics12030542.
Google Scholar
Hardefeldt LY, Gilkerson JR, Billman-Jacobe H, Stevenson MA, Thursky K, Bailey KE, et al. Barriers to and enablers of implementing antimicrobial stewardship programs in veterinary practices. J Vet Intern Med. 2018;32:1092–9. https://doi.org/10.1111/jvim.15083.
Google Scholar
Pozza G, Pinto A, Crovato S, Mascarello G, Bano L, Dacasto M, et al. Antimicrobial use and antimicrobial resistance: standpoint and prescribing behaviour of Italian cattle and pig veterinarians. Ital J Anim Sci. 2020;19:905–16. https://doi.org/10.1080/1828051X.2020.1807419.
Google Scholar
Kovačević Z, Vidović J, Erdeljan M, Cincović M, Ružić Z, Galić I, et al. Veterinary practitioners’ standpoints and comprehension towards antimicrobial use—are there opportunities for antimicrobial stewardship improvement?? Antibiotics. 2022;11: 867. https://doi.org/10.3390/antibiotics11070867.
Google Scholar
Sri A, Bailey KE, Gilkerson JR, Browning GF, Hardefeldt LY. Attitudes towards use of high-importance antimicrobials—a cross-sectional study of Australian veterinarians. Antibiotics. 2022;11:1589. https://doi.org/10.3390/antibiotics11111589.
Google Scholar
Barrington GM, Biosecurity. Llama Alpaca Care [Internet]. Elsevier; 2014. pp. 1–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978143772352600001810.1016/B978-1-4377-2352-6.00001-8
FAO. Biosecurity in terrestrial animal value chains [Internet]. 2025 [cited 2025 May 22]. Available from: https://www.fao.org/animal-health/areas-of-work/biosecurity/en
Guidelines for the use of antibiotics. in production animals – Cattle, pigs, sheep and goats [Internet]. 2017 [cited 2025 May 19]. Available from: https://www.svf.se/media/vd5ney4l/svfs-riktlinje-antibiotika-till-produktionsdjur-eng-2017.pdf
Wu Z. Antibiotic use and antibiotic resistance in food-producing animals in China. No. 134, Publishing OECD. Paris; 2019 Jul. https://doi.org/10.1787/4adba8c1-en
Bao TD, Van Cuong N, Mai NN, Ha LTT, Phu DH, Kiet BT, et al. Economic assessment of an intervention strategy to reduce antimicrobial usage in small-scale chicken farms in Vietnam. One Health. 2024;18: 100699. https://doi.org/10.1016/j.onehlt.2024.100699.
Google Scholar
Withdrawal period [Internet]. Eur. Med. Agency. [cited 2025 May 20]. Available from: https://www.ema.europa.eu/en/glossary-terms/withdrawal-period
Lee C-R, Lee JH, Kang L-W, Jeong BC, Lee SH. Educational effectiveness, target, and content for prudent antibiotic use. Biomed Res Int. 2015;2015:1–13. https://doi.org/10.1155/2015/214021.
Google Scholar
Allerton F, Russell J. Antimicrobial stewardship in veterinary medicine: a review of online resources. JAC-Antimicrobial Resistance. 2023. https://doi.org/10.1093/jacamr/dlad058.
Google Scholar
Rocha V, Estrela M, Neto V, Roque F, Figueiras A, Herdeiro MT. Educational interventions to reduce prescription and dispensing of antibiotics in primary care: a systematic review of economic impact. Antibiotics. 2022;11:1186. https://doi.org/10.3390/antibiotics11091186.
Google Scholar
Roque F, Herdeiro MT, Soares S, Teixeira Rodrigues A, Breitenfeld L, Figueiras A. Educational interventions to improve prescription and dispensing of antibiotics: a systematic review. BMC Public Health. 2014;14:1276. https://doi.org/10.1186/1471-2458-14-1276.
Google Scholar
Brennan N, Mattick K. A systematic review of educational interventions to change behaviour of prescribers in hospital settings, with a particular emphasis on new prescribers. Br J Clin Pharmacol. 2013;75:359–72. https://doi.org/10.1111/j.1365-2125.2012.04397.x.
Google Scholar
Davey P, Marwick CA, Scott CL, Charani E, McNeil K, Brown E, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2017;(2): CD003543. https://doi.org/10.1002/14651858.CD003543.pub4.
Google Scholar
Warreman EB, Lambregts MMC, Wouters RHP, Visser LG, Staats H, van Dijk E, et al. Determinants of in-hospital antibiotic prescription behaviour: a systematic review and formation of a comprehensive framework. Clin Microbiol Infect. 2019;25(5):538–45. https://doi.org/10.1016/j.cmi.2018.09.006.
Google Scholar
Boiko O, Burgess C, Fox R, Ashworth M, Gulliford MC. Risks of use and non-use of antibiotics in primary care: qualitative study of prescribers’ views. BMJ Open. 2020;10:e038851. https://doi.org/10.1136/bmjopen-2020-038851.
Google Scholar
Hardefeldt LY, Browning GF, Thursky K, Gilkerson JR, Billman-Jacobe H, Stevenson MA, et al. Antimicrobials used for surgical prophylaxis by companion animal veterinarians in Australia. Vet Microbiol. 2017;203:301–7. https://doi.org/10.1016/j.vetmic.2017.03.027.
Google Scholar
Southwood LL. Surgical antimicrobial prophylaxis: current standards of care. Equine Vet Educ. 2023;35:607–16. https://doi.org/10.1111/eve.13864.
Google Scholar
FAO/WHO. Codex Alimentarius – Code of Practice to Minimize and Contain Foodborne Antimicrobial Resistance (CXC 61-2005) [Internet]. 2021. Available from: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B61-2005%252FCXC_061e.pdf
WOAH. Terrestrial Animal Health Code – Chap. 6.10. Responsible and Prudent Use of Antimicrobial Agents in Veterinary Medicine [Internet]. 2023 [cited 2024 May 28]. Available from: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/
WHO. WHO guidelines on use of medically important antimicrobials in food-producing animals. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO; 2017.
Om C, McLaws M-L. Antibiotics: practice and opinions of Cambodian commercial farmers, animal feed retailers and veterinarians. Antimicrob Resist Infect Control. 2016;5:42. https://doi.org/10.1186/s13756-016-0147-y.
Google Scholar
Mateus ALP, Brodbelt DC, Barber N, Stärk KDC. Qualitative study of factors associated with antimicrobial usage in seven small animal veterinary practices in the UK. Prev Vet Med. 2014;117:68–78. https://doi.org/10.1016/j.prevetmed.2014.05.007.
Google Scholar
Redding LE, Barg FK, Smith G, Galligan DT, Levy MZ, Hennessy S. The role of veterinarians and feed-store vendors in the prescription and use of antibiotics on small dairy farms in rural Peru. J Dairy Sci. 2013;96:7349–54. https://doi.org/10.3168/jds.2013-7045.
Google Scholar
Servia-Dopazo M, Figueiras A. Determinants of antibiotic dispensing without prescription: a systematic review. J Antimicrob Chemother. 2018;73:3244–53. https://doi.org/10.1093/jac/dky319.
Google Scholar
Kumar KS, Saranya S, Rani NV. Community pharmacists’ knowledge, attitude, and nonprescription dispensing practices of antibiotics. J Res Pharm Pract. 2022;11:51–8. https://doi.org/10.4103/jrpp.jrpp_48_21.
Google Scholar
Md Rezal RS, Hassali MA, Alrasheedy AA, Saleem F, Md Yusof FA, Godman B. Physicians’ knowledge, perceptions and behaviour towards antibiotic prescribing: a systematic review of the literature. Expert Rev Anti-Infect Ther. 2015;13:665–80. https://doi.org/10.1586/14787210.2015.1025057.
Google Scholar
Coyne LA, Latham SM, Williams NJ, Dawson S, Donald IJ, Pearson RB, et al. Understanding the culture of antimicrobial prescribing in agriculture: a qualitative study of UK pig veterinary surgeons. J Antimicrob Chemother. 2016;71:3300–12. https://doi.org/10.1093/jac/dkw300.
Google Scholar
European Commission. Farm to Fork strategy for a fair, healthy and environmentally-friendly food system [Internet]. 2020. Available from: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en [Accessed: 2025-03-03].
Speksnijder DC, Jaarsma ADC, van der Gugten AC, Verheij TJM, Wagenaar JA. Determinants associated with veterinary antimicrobial prescribing in farm animals in the Netherlands: a qualitative study. Zoonoses Public Health. 2015;62(s1):39–51. https://doi.org/10.1111/zph.12168.
Google Scholar
Coyne LA, Pinchbeck GL, Williams NJ, Smith RF, Dawson S, Pearson RB, et al. Understanding antimicrobial use and prescribing behaviours by pig veterinary surgeons and farmers: a qualitative study. Vet Rec. 2014;175:593–593. https://doi.org/10.1136/vr.102686.
Google Scholar
Etienne J, Chirico S, Gunabalasingham T, Dautzenberg S, Gysen S. EU Insights – Perceptions on the human health impact of antimicrobial resistance (AMR) and antibiotics use in animals across the EU. EFSA Support Publ. 2017. https://doi.org/10.2903/sp.efsa.2017.EN-1183.
Google Scholar
Smith M, King C, Davis M, Dickson A, Park J, Smith F, et al. Pet owner and vet interactions: exploring the drivers of AMR. Antimicrob Resist Infect Control. 2018;7:46. https://doi.org/10.1186/s13756-018-0341-1.
Google Scholar
Chauhan AS, George MS, Chatterjee P, Lindahl J, Grace D, Kakkar M. The social biography of antibiotic use in smallholder dairy farms in India. Antimicrob Resist Infect Control. 2018;7:60. https://doi.org/10.1186/s13756-018-0354-9.
Google Scholar
Fuller W, Kapona O, Aboderin AO, Adeyemo AT, Olatunbosun OI, Gahimbare L, et al. Education and awareness on antimicrobial resistance in the WHO African region: a systematic review. Antibiotics. 2023;12:1613. https://doi.org/10.3390/antibiotics12111613.
Google Scholar
Singleton DA, Pinchbeck GL, Radford AD, Arsevska E, Dawson S, Jones PH, et al. Factors associated with prescription of antimicrobial drugs for dogs and cats, United Kingdom, 2014–2016. Emerg Infect Dis. 2020;26:1778–91. https://doi.org/10.3201/eid2608.191786.
Google Scholar
Springer S, Lund TB, Grimm H, Kristensen AT, Corr SA, Sandøe P. Comparing veterinarians’ attitudes to and the potential influence of pet health insurance in Austria, Denmark and the UK. Vet Rec. 2022. https://doi.org/10.1002/vetr.1266.
Google Scholar
Ahmed I, Merchant FM, Curtis JP, Parzynski CS, Lampert R. Impact of insurance status on ICD implantation practice patterns: insights from the NCDR ICD registry. Am Heart J. 2021;235:44–53. https://doi.org/10.1016/j.ahj.2021.01.016.
Google Scholar
Patil D, Issa AM. Factors affecting the adoption and use of gene expression profiling by oncologists in clinical practice. Per Med. 2015;12:33–42. https://doi.org/10.2217/pme.14.62.
Google Scholar
Kongsted H, Loughlin ETM. Lowering antibiotic usage and phasing out pharmaceutical zinc oxide in Danish pig herds: pig farmers’ and veterinarians’ experiences and perceptions. Livest Sci. 2023;273: 105260. https://doi.org/10.1016/j.livsci.2023.105260.
Google Scholar
Carmo LP, Nielsen LR, Alban L, da Costa PM, Schüpbach-Regula G, Magouras I. Veterinary expert opinion on potential drivers and opportunities for changing antimicrobial usage practices in livestock in Denmark, Portugal, and Switzerland. Front Vet Sci. 2018;5: 29. https://doi.org/10.3389/fvets.2018.00029.
Google Scholar
Mazza F, Scali F, Formenti N, Romeo C, Tonni M, Ventura G, et al. The relationship between animal welfare and antimicrobial use in Italian dairy farms. Animals. 2021;11:2575. https://doi.org/10.3390/ani11092575.
Google Scholar
Ginestreti J, Lorenzi V, Fusi F, Bertocchi L, Scali F, Loris A, et al. Antimicrobial usage, animal welfare and biosecurity in 16 dairy farms in Lombardy. Large Anim Rev. 2020;26:3–11.
Patel SJ, Wellington M, Shah RM, Ferreira MJ. Antibiotic stewardship in food-producing animals: challenges, progress, and opportunities. Clin Ther. 2020;42:1649–58. https://doi.org/10.1016/j.clinthera.2020.07.004.
Google Scholar
Tang KL, Caffrey NP, Nóbrega DB, Cork SC, Ronksley PE, Barkema HW, et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. Lancet Planet Heal. 2017;1:e316–27. https://doi.org/10.1016/S2542-5196(17)30141-9.
Google Scholar
Charani E, Smith I, Skodvin B, Perozziello A, Lucet J-C, Lescure F-X, et al. Investigating the cultural and contextual determinants of antimicrobial stewardship programmes across low-, middle- and high-income countries—a qualitative study. PLoS One. 2019;14:e0209847. https://doi.org/10.1371/journal.pone.0209847.
Google Scholar
Charani E, Ahmad R, Rawson TM, Castro-Sanchèz E, Tarrant C, Holmes AH. The differences in antibiotic decision-making between acute surgical and acute medical teams: an ethnographic study of culture and team dynamics. Clin Infect Dis. 2019;69:12–20. https://doi.org/10.1093/cid/ciy844.
Google Scholar
Kasimanickam V, Kasimanickam M, Kasimanickam R. Antibiotics use in food animal production: escalation of antimicrobial resistance: where are we now in combating AMR? Med Sci. 2021;9: 14. https://doi.org/10.3390/medsci9010014.
Google Scholar
Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist. 2015. https://doi.org/10.2147/IDR.S55778.
Google Scholar
Rees GM, Bard A, Reyher KK. Designing a national veterinary prescribing champion programme for Welsh veterinary practices: the Arwain vet Cymru project. Antibiotics. 2021;10:253. https://doi.org/10.3390/antibiotics10030253.
Google Scholar
Bellet C, Woodnutt J, Green LE, Kaler J. Preventative services offered by veterinarians on sheep farms in England and Wales: opinions and drivers for proactive flock health planning. Prev Vet Med. 2015;122:381–8. https://doi.org/10.1016/j.prevetmed.2015.07.008.
Google Scholar
Hopman NEM, Hulscher MEJL, Graveland H, Speksnijder DC, Wagenaar JA, Broens EM. Factors influencing antimicrobial prescribing by Dutch companion animal veterinarians: a qualitative study. Prev Vet Med. 2018;158:106–13. https://doi.org/10.1016/j.prevetmed.2018.07.013.
Google Scholar
Velazquez-Meza ME, Galarde-López M, Carrillo-Quiróz B, Alpuche-Aranda CM. Antimicrobial resistance: one health approach. Vet World. 2022;15:743–9. https://doi.org/10.14202/vetworld.2022.743-749.
Google Scholar
Davies B, Erlacher-Vindel E, Arroyo Kuribrena M, Gochez D, Jeannin M, Magongo M, et al. Antimicrobial use in animals: a journey towards integrated surveillance. Rev Sci Tech Off Int Epiz. 2023;42:201–9. https://doi.org/10.20506/rst.42.3363.
Google Scholar
FAO, WOAH UNEP, WHO. Global Database for Tracking Antimicrobial Resistance (AMR) Country Self- Assessment Survey (TrACSS) [Internet]. Available from: https://new.amrcountryprogress.org/ [Accessed: 2025-03-05].
Sabbatucci M, Ashiru-Oredope D, Barbier L, Bohin E, Bou-Antoun S, Brown C, et al. Tracking progress on antimicrobial resistance by the quadripartite country self-assessment survey (TrACSS) in G7 countries, 2017–2023: opportunities and gaps. Pharmacol Res. 2024;204: 107188. https://doi.org/10.1016/j.phrs.2024.107188.
Google Scholar
White C, Basham N, Floyd S, Morrow L, Dean RS, Brennan ML. Cross-sectional survey of sources of information accompanying veterinary product advertisements in two professional print publications. Vet Rec. 2024;194: e3902. https://doi.org/10.1002/vetr.3902.
Google Scholar
WOAH. Risks associated with the use of antimicrobials in animals worldwide. 2014.
WOAH. Strategy on Antimicrobial Resistance and the Prudent Use of Antimicrobials. Preserving the efficacy of antimicrobials [Internet]. Available from: https://www.woah.org/app/uploads/2021/03/en-amr-strategy-final.pdf
WHO. Stop using antibiotics in healthy animals to prevent the spread of antibiotic resistance [Internet]. 2017 [cited 2024 Nov 28]. Available from: https://www.who.int/news/item/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance
Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015;112:5649–54. https://doi.org/10.1073/pnas.1503141112.
Google Scholar
Adamie B, Akwar H, Arroyo M, Bayko H, Hafner M, Harrison S et al. Forecasting the Fallout from AMR: Economic Impacts of Antimicrobial Resistance in Food-Producing Animals – A report from the EcoAMR series. Paris (France) and Washington, DC (United States of America); 2024.
Seyoum ET, Eguale T, Habib I, Oliveira CJB, Monte DFM, Yang B, et al. Pre-harvest food safety challenges in food-animal production in low- and middle-income countries. Animals. 2024;14:786. https://doi.org/10.3390/ani14050786.
Google Scholar
About the Fleming Fund [Internet]. 2025 [cited 2025 May 24]. Available from: https://www.flemingfund.org/about-us/
WHO, WOAH FAO. UNEP. Multi-Partner Trust Fund [Internet]. [cited 2025 May 24]. Available from: https://www.qjsamr.org/multi-partner-trust-fund/about [Accessed: 2025-02-25].
International Centre for Antimicrobial Resistance. Solutions (ICARS) [Internet]. [cited 2025 May 24]. Available from: https://icars-global.org/
Velayudhan BT, Naikare HK. Point-of-care testing in companion and food animal disease diagnostics. Front Vet Sci. 2022;9: 1056440. https://doi.org/10.3389/fvets.2022.1056440.
Google Scholar
Buller H, Adam K, Bard A, Bruce A, Chan KW (Ray), Hinchliffe S, et al. Veterinary diagnostic practice and the use of rapid tests in antimicrobial stewardship on UK livestock farms. Front Vet Sci. 2020. https://doi.org/10.3389/fvets.2020.569545.
Google Scholar
Bard AM, Hinchliffe S, Chan KW, Buller H, Reyher KK. I believe what i’m saying more than the test’: the complicated place of rapid, point-of-care tests in veterinary diagnostic practice. Antibiotics. 2023;12: 804. https://doi.org/10.3390/antibiotics12050804.
Google Scholar
WHO. WHO’s List of Medically Important Antimicrobials. a risk management tool for mitigating antimicrobial resistance due to non-human use. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO; 2024.
Odom TF, Riley CB, Benschop J, Hill KE. Medication compliance by cat owners prescribed treatment for home administration. J Vet Intern Med. 2025. https://doi.org/10.1111/jvim.17298.
Google Scholar
Scarborough RO, Bailey KE, Sri AE, Browning GF, Hardefeldt LY. Seeking simplicity, navigating complexity: how veterinarians select an antimicrobial drug, dose, and duration for companion animals. J Vet Intern Med. 2024;38:3215–34. https://doi.org/10.1111/jvim.17197.
Google Scholar
Adegbeye MJ, Adetuyi BO, Igirigi AI, Adisa A, Palangi V, Aiyedun S, et al. Comprehensive insights into antibiotic residues in livestock products: distribution, factors, challenges, opportunities, and implications for food safety and public health. Food Control. 2024;163:110545. https://doi.org/10.1016/j.foodcont.2024.110545.
Google Scholar
Baynes RE, Dedonder K, Kissell L, Mzyk D, Marmulak T, Smith G, et al. Health concerns and management of select veterinary drug residues. Food Chem Toxicol. 2016;88:112–22. https://doi.org/10.1016/j.fct.2015.12.020.
Google Scholar
Pena A, Serrano C, Réu C, Baeta L, Calderón V, Silveira I, et al. Antibiotic residues in edible tissues and antibiotic resistance of faecal Escherichia coli in pigs from Portugal. Food Addit Contam. 2004;21:749–55. https://doi.org/10.1080/02652030410001712493.
Google Scholar
Obritzhauser W, Trauffler M, Raith J, Kopacka I, Fuchs K, Köfer J. Antimicrobial drug use on Austrian dairy farms with special consideration of the use of highest priority critically important antimicrobials. Berl Munch Tierarztl Wochenschr. 2016;129:185–95.
Google Scholar
Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 2018;23:795. https://doi.org/10.3390/molecules23040795.
Google Scholar
Anomaly J. What’s wrong with factory farming?? Public Health Ethics. 2015;8:246–54. https://doi.org/10.1093/phe/phu001.
Google Scholar
Stevenson P. Links between industrial livestock production, disease including zoonoses and antimicrobial resistance. Animal Research and One Health. 2023;1(1):137–44. https://doi.org/10.1002/aro2.19.
Google Scholar
Niu X, Ding Y, Chen S, Gooneratne R, Ju X. Effect of immune stress on growth performance and immune functions of livestock: mechanisms and prevention. Animals. 2022;12:909. https://doi.org/10.3390/ani12070909.
Google Scholar
Equine Antimicrobial Use Guidelines [Internet]. 2022 [cited 2025 Jul 2]. Available from: https://assets.gov.ie/246259/efd59850-1944-452f-8725-958f67fe384d.pdf
Guidelines for the prudent use. of veterinary antimicrobial drugs – with notes for guidance [Internet]. 2015 [cited 2025 Jul 2]. Available from: https://www.bundestieraerztekammer.de/btk/downloads/antibiotika/AB_Leitlinien2015_EN.pdf
Sun Y, Scruggs DW, Peng Y, Johnson JR, Shukla AJ. Issues and challenges in developing long-acting veterinary antibiotic formulations. Adv Drug Deliv Rev. 2004;56:1481–96. https://doi.org/10.1016/j.addr.2004.02.009.
Google Scholar
Loeffler A, Cain CL, Ferrer L, Nishifuji K, Varjonen K, Papich MG, et al. Antimicrobial use guidelines for canine pyoderma by the international society for companion animal infectious diseases (ISCAID). Vet Dermatol. 2025;36:234–82. https://doi.org/10.1111/vde.13342.
Google Scholar
Echtermann T, Muentener C, Sidler X, Kuemmerlen D. Antimicrobial usage among different age categories and herd sizes in Swiss farrow-to-finish farms. Front Vet Sci. 2020. https://doi.org/10.3389/fvets.2020.566529.
Google Scholar
Merle R, Feuer L, Frenzer K, Plenio J-L, Bethe A, Sarnino N, et al. Use of antibiotics in companion animals from 133 German practices from 2018 to 2023. Antibiotics. 2025;14:58. https://doi.org/10.3390/antibiotics14010058.
Google Scholar
Nobrega DB, Naqvi SA, Dufour S, Deardon R, Kastelic JP, De Buck J, et al. Critically important antimicrobials are generally not needed to treat nonsevere clinical mastitis in lactating dairy cows: results from a network meta-analysis. J Dairy Sci. 2020;103:10585–603. https://doi.org/10.3168/jds.2020-18365.
Google Scholar
Tonne RS, Bencie NB, Hubach RD. Comparison of perceptions and concerns of antimicrobial resistance between veterinary and medical health professionals. Am J Vet Res. 2023. https://doi.org/10.2460/ajvr.23.06.0121.
Google Scholar
Magnusson U, Moodley A, Osbjer K. Antimicrobial resistance at the livestock-human interface: implications for veterinary services. Rev Sci Tech l’OIE. 2021;40:511–21. https://doi.org/10.20506/rst.40.2.3241.
Google Scholar