Friedman J, Waller GR. Allelopathy and autotoxicity. Trends Biochem Sci. 1985;10(2):47–50. https://doi.org/10.1016/0968-0004(85)90224-5.
Google Scholar
Meiners S, Kong C, Ladwig L, Pisula N, Lang K. Developing an ecological context for allelopathy. Plant Ecol. 2012;213:1221–7. https://doi.org/10.1007/s11258-012-0078-5.
Google Scholar
Zhang Z, Liu Y, Yuan L, Weber E, van Kleunen M. Effect of allelopathy on plant performance: a meta-analysis. Ecol Lett. 2021;24(2):348–62. https://doi.org/10.1111/ele.13627.
Google Scholar
Williams RD, Hoagland RE. The effects of naturally occurring phenolic compounds on seed germination. Weed Sci. 1982;30(2):206–12. https://doi.org/10.1017/S0043174500062342.
Google Scholar
Rasmussen JA, Einhellig FA. Synergistic inhibitory effects of p-coumaric and ferulic acids on germination and growth of grain sorghum. J Chem Ecol. 1977;3:197–205. https://doi.org/10.1007/BF00994146.
Google Scholar
Blum U, Dalton BR, Rawlings JO. Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber. J Chem Ecol. 1984;10:1169–91. https://doi.org/10.1007/BF00988547.
Google Scholar
Li Z, Wang Q, Ruan X, Pan C, Jiang D. Phenolics and plant allelopathy. Molecules. 2010;15(12):8933–52. https://doi.org/10.3390/molecules15128933.
Google Scholar
Wang K, Wang T, Ren C, Dou P, Miao Z, Liu X, Huang D, Wang K. Aqueous extracts of three herbs allelopathically inhibit lettuce germination but promote seedling growth at low concentrations. Plants. 2022;11(4):486. https://doi.org/10.3390/plants11040486.
Google Scholar
Yang S, Zheng Y, Guo Y, Cen Z, Dong Y. Allelopathic effect of phenolic acids in various extracts of wheat against fusarium wilt in Faba bean. Funct Plant Biol. 2023;50(12):1062–72. https://doi.org/10.1071/FP23052.
Google Scholar
Gruľová D, Baranová B, Eliašová A, Brun C, Fejér J, Kron I, Campone L, Pagliari S, Nastišin Ľ, Sedlák V. Does the invasive Heracleum mantegazzianum influence other species by allelopathy? Plants. 2024;13(10):1333. https://doi.org/10.3390/plants13101333.
Google Scholar
Basile A, Sorbo S, Giordano S, Ricciardi L, Ferrara S, Montesano D, Castaldo Cobianchi R, Vuotto ML, Ferrara L. Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia. 2000;71:S110–6. https://doi.org/10.1016/S0367-326X(00)00185-4.
Google Scholar
Li J, Zhao T, Chen L, Chen H, Luo D, Chen C, Miao Y, Liu D. Artemisia argyi allelopathy: a generalist compromises hormone balance, element absorption, and photosynthesis of receptor plants. BMC Plant Biol. 2022;22(1):368. https://doi.org/10.1186/s12870-022-03757-9.
Google Scholar
Patanè C, Pellegrino A, Cosentino SL, Testa G. Allelopathic effects of Cannabis sativa L. aqueous leaf extracts on seed germination and seedling growth in durum wheat and barley. Agronomy. 2023;13(2):454. https://doi.org/10.3390/agronomy13020454.
Google Scholar
Yang H, Zhao Y, Wei S, Yu X. Isolation of allelochemicals from Rhododendron capitatum and their allelopathy on three perennial herbaceous plants. Plants. 2024;13(18):2585. https://doi.org/10.3390/plants13182585.
Google Scholar
Wu R, Wu B, Cheng H, Wang S, Wei M, Wang C. Drought enhanced the allelopathy of goldenrod on the seed germination and seedling growth performance of lettuce. Pol J Environ Stud. 2020;30(1):423–32. https://doi.org/10.15244/PJOES/122691.
Google Scholar
Wang X, Zhang R, Wang J, Di L, Wang H, Sikdar A. The effects of leaf extracts of four tree species on Amygdalus pedunculata seedlings growth. Front Plant Sci. 2021;11:587579. https://doi.org/10.3389/fpls.2020.587579.
Google Scholar
Wang K, Dou P, Miao Z, Huang J, Gao Q, Guo L, Liu K, Rong Y, Huang D, Wang K. Seed germination and seedling growth response of Leymus chinensis to the allelopathic influence of grassland plants. Oecologia. 2024;204:899–913. https://doi.org/10.1007/s00442-024-05539-6.
Google Scholar
Qu T, Du X, Peng Y, Guo W, Zhao C, Losapio G. Invasive species allelopathy decreases plant growth and soil microbial activity. PLoS ONE. 2021;16(2):e0246685. https://doi.org/10.1371/journal.pone.0246685.
Google Scholar
Wang X, Wang J, Zhang R, Huang Y, Feng S, Ma X, Zhang Y, Sikdar A, Roy R. Allelopathic effects of aqueous leaf extracts from four shrub species on seed germination and initial growth of Amygdalus pedunculata pall. Forests. 2018;9(11):711. https://doi.org/10.3390/f9110711.
Google Scholar
Hedge RS, Miller DA. Allelopathy and autotoxicity in alfalfa: characterization and effects of preceding crops and residue incorporation. Crop Sci. 1990;30(6):1255–9. https://doi.org/10.2135/cropsci1990.0011183X003000060020x.
Google Scholar
McNaughton SJ. Autotoxic feedback in relatin to germination and seedling growth in Typha latifolia. Ecology. 1968;49(2):367–9. https://doi.org/10.2307/1934475.
Google Scholar
Wang C, Liu Z, Wang Z, Pang W, Zhang L, Wen Z, Zhao Y, Sun J, Wang Z, Yang C. Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. Front Plant Sci. 2022;13:908426. https://doi.org/10.3389/fpls.2022.908426.
Google Scholar
Šoln K, Klemenčič M, Koce JD. Plant cell responses to allelopathy: from oxidative stress to programmed cell death. Protoplasma. 2022;259(5):1111–24. https://doi.org/10.1007/s00709-021-01729-8.
Google Scholar
Abenavoli MR, Cacco G, Sorgona A, Marabottini R, Paolacci AR, Ciaffi M, Badiani M. The inhibitory effects of coumarin on the germination of durum wheat (Triticum turgidum ssp. durum, cv. Simeto) seeds. J Chem Ecol. 2006;32:489–506. https://doi.org/10.1007/s10886-005-9011-x.
Google Scholar
Wang G, Qian J, Cheng G, Lan Y. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan plateau and its global implication. Sci Total Environ. 2002;291(1–3):207–17. https://doi.org/10.1016/s0048-9697(01)01100-7.
Google Scholar
Zhou X, Xiao Y, Ma D, Xie Y, Wang Y, Zhang H, Wang Y. The competitive strategies of poisonous weeds Elsholtzia densa benth. On the Qinghai Tibet plateau: allelopathy and improving soil environment. Front Plant Sci. 2023;14:1124139. https://doi.org/10.3389/fpls.2023.1124139.
Google Scholar
Han C, Pan K, Wu N, Wang J, Li W. Allelopathic effect of ginger on seed germination and seedling growth of soybean and Chive. Sci Hort. 2008;116(3):330–6. https://doi.org/10.1016/j.scienta.2008.01.005.
Google Scholar
Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol. 2005;31:1187–203. https://doi.org/10.1007/s10886-005-4256-y.
Google Scholar
Đorđević T, Đurović-Pejčev R, Stevanović M, Sarić-Krsmanović M, Radivojević L, Šantrić L, Gajić-Umiljendić J. Phytotoxicity and allelopathic potential of Juglans regia L. leaf extract. Front Plant Sci. 2022;13:986740. https://doi.org/10.3389/fpls.2022.986740.
Google Scholar
Zeng R, Luo S, Shi Y, Shi M, Tu C. Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agron J. 2001;93(1):72–9. https://doi.org/10.2134/agronj2001.93172x.
Google Scholar
Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science. 2003;301(5638):1377–80. https://doi.org/10.1126/science.1083245.
Google Scholar
Yildirim AN, Çelik C, Yildirim F, Şan B, Polat M, Binici S, Pepe AV. Effects of different plant growth-promoting sources on antioxidant enzyme activities and phenolic compounds of Apple. Appl Fruit Sci. 2025;67(3):1–9. https://doi.org/10.1007/s10341-025-01359-x.
Google Scholar
Sodaeizadeh H, Rafieiolhossaini M, Havlík J, Van Damme P. Allelopathic activity of different plant parts of Peganum harmala L. and identification of their growth inhibitors substances. Plant Growth Regul. 2009;59:227–36. https://doi.org/10.1007/s10725-009-9408-6.
Google Scholar
Gil CS, Duan S, Kim JH, Eom SH. Allelopathic efficiency of plant extracts to control cyanobacteria in hydroponic culture. Agronomy. 2021;11(11):2350. https://doi.org/10.3390/agronomy11112350.
Google Scholar
Wang Y, Hanson J, Mariam YW. Effect of sulfuric acid pretreatment on breaking hard seed dormancy in diverse accessions of five wild Vigna species. Seed Sci Technol. 2007;35(3):550–9. https://doi.org/10.15258/sst.2007.35.3.03.
Google Scholar
Wang C, Wu B, Jiang K. Allelopathic effects of Canada goldenrod leaf extracts on the seed germination and seedling growth of lettuce reinforced under salt stress. Ecotoxicology. 2019;28:103–16. https://doi.org/10.1007/s10646-018-2004-7.
Google Scholar
Patanè C, Cavallaro V, Cosentino SL. Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures. Ind Crops Prod. 2009;30(1):1–8. https://doi.org/10.1016/j.indcrop.2008.12.005.
Google Scholar
Hou Q, Chen B, Peng S, Chen L. Effects of extreme temperature on seedling establishment of nonnative invasive plants. Biol Invasions. 2014;16:2049–61. https://doi.org/10.1007/s10530-014-0647-8.
Google Scholar
Li X, Wang J, Huang D, Wang L, Wang K. Allelopathic potential of Artemisia frigida and successional changes of plant communities in the Northern China steppe. Plant Soil. 2011;341:383–98. https://doi.org/10.1007/s11104-010-0652-3.
Google Scholar
Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–87. https://doi.org/10.1016/0003-2697(71)90370-8.
Google Scholar
Zhou W, Zhao D, Lin X. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and Mixtalol in winter rape (Brassica napus L). J Plant Growth Regul. 1997;16:47–53. https://doi.org/10.1007/PL00006974.
Google Scholar
Quintanilla-Guerrero F, Duarte-Vázquez MA, García-Almendarez BE, Tinoco R, Vazquez-Duhalt R, Regalado C. Polyethylene glycol improves phenol removal by immobilized turnip peroxidase. Bioresour Technol. 2008;99(18):8605–11. https://doi.org/10.1016/j.biortech.2008.04.031.
Google Scholar
Muñoz-Muñoz JL, García-Molina F, García-Ruiz PA, Arribas E, Tudela J, García-Cánovas F, Rodríguez-López JN. Enzymatic and chemical oxidation of trihydroxylated phenols. Food Chem. 2009;113(2):435–44. https://doi.org/10.1016/j.foodchem.2008.07.076.
Google Scholar
Aebi H. Catalase in vitro. In: Packer L, editor. Methods in enzymology. Orlando: Academic; 1984. pp. 121–6. https://doi.org/10.1016/S0076-6879(84)05016-3.
Google Scholar
Brady CJ, Heng F. Rate of protein synthesis in senescing, detached wheat leaves. Funct Plant Biol. 1975;2(2):163–76. https://doi.org/10.1071/pp9750163.
Google Scholar
Arora R, Wisniewski ME, Scorza R. Cold acclimation in genetically related (sibling) deciduous and evergreen Peach (Prunus persica [L.] Batsch): I. seasonal changes in cold hardiness and polypeptides of bark and xylem tissues. Plant Physiol. 1992;105:95–101. https://doi.org/10.1104/pp.99.4.1562.
Google Scholar
Williamson GB, Richardson D. Bioassays for allelopathy: measuring treatment responses with independent controls. J Chem Ecol. 1988;14:181–7. https://doi.org/10.1007/BF01022540.
Google Scholar
Turk MA, Tawaha AM. Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L). Crop Prot. 2003;22(4):673–7. https://doi.org/10.1016/s0261-2194(02)00241-7.
Google Scholar
Zhang T, Guo W, Tian X, Lv Y, Feng K, Zhang C. Allelopathic effects of Borreria latifolia on weed germination and identification of allelochemicals. J Sci Food Agric. 2025;105(1):626–34. https://doi.org/10.1002/jsfa.13859.
Google Scholar
Haugland E, Brandsaeter LO. Experiments on bioassay sensitivity in the study of allelopathy. J Chem Ecol. 1996;22:1845–59. https://doi.org/10.1007/bf02028508.
Google Scholar
Chon SU, Nelson CJ. Allelopathy in compositae plants. A review. Agron Sustain Dev. 2010;30(2):349–58. https://doi.org/10.1051/agro/2009027.
Google Scholar
Cruz Ortega R, Anaya AL, Ramos L. Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J Chem Ecol. 1988;14:71–86. https://doi.org/10.1007/BF01022532.
Google Scholar
Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils–a review. Food Chem Toxicol. 2008;46(2):446–75. https://doi.org/10.1016/j.fct.2007.09.106.
Google Scholar
Arora S, Husain T, Prasad SM. Allelochemicals as biocontrol agents: promising aspects, challenges and opportunities. South Afr J Bot. 2024;166:503–11. https://doi.org/10.1016/j.sajb.2024.01.029.
Google Scholar
Mominul Islam AKM, Kato-Noguchi H. Plant growth inhibitory activity of medicinal plant Hyptis suaveolens: could allelopathy be a cause. Emirates J Food Agric. 2013;25(9):692–701. https://doi.org/10.9755/EJFA.V25I9.16073.
Google Scholar
Meychik N, Nikolaeva Y, Kushunina M. The significance of ion-exchange properties of plant root cell walls for nutrient and water uptake by plants. Plant Physiol Biochem. 2021;166:140–7. https://doi.org/10.1016/j.plaphy.2021.05.048.
Google Scholar
Hu Y, Wang H. Production and scavenging of reactive oxygen species in plant cells under cadmium stress. Agron J. 2025;117(4):e70116. https://doi.org/10.1002/agj2.70116.
Google Scholar
Cheng F, Cheng Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci. 2015;6:1020. https://doi.org/10.3906/bot-1302-29.
Google Scholar
Callaway RM, Ridenour WM, Laboski T, Weir T, Vivanco JM. Natural selection for resistance to the allelopathic effects of invasive plants. J Ecol. 2005;93(3):576–83. https://doi.org/10.1111/j.1365-2745.2005.00994.x.
Google Scholar
Wang L, Oduor AM, Liu Y. A native herbaceous community exerts a strong allelopathic effect on the Woody range-expander Betula fruticosa. J Plant Ecol. 2024;17(4):rtae055. https://doi.org/10.1093/jpe/rtae055.
Google Scholar
Wang C, Liu X, Li J, Yue L, Yang H, Zou H, Wang Z, Xing B. Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth. Environ Pollut. 2021;289:117912. https://doi.org/10.1016/j.envpol.2021.117912.
Google Scholar
Wu H, Shabala L, Shabala S, Giraldo JP. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ Science: Nano. 2018;5(7):1567–83. https://doi.org/10.1039/C8EN00323H.
Google Scholar
Li D, Si J, Li J, Wang P, Yuan L. Physiological responses and differences of Populus euphratica to salt stress and drought stress. J Desert Res. 2023;43(2):205–15. https://doi.org/10.7522/j.issn.1000-694X.2023.00006.
Google Scholar
Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology. 2021;10(4):267. https://doi.org/10.3390/biology10040267.
Google Scholar
Ding J, Sun Y, Xiao C, Shi K, Zhou Y, Yu J. Physiological basis of different allelopathic reactions of cucumber and Figleaf gourd plants to cinnamic acid. J Exp Bot. 2007;58(13):3765–73. https://doi.org/10.1093/jxb/erm227.
Google Scholar
Hua Q, Liu Y, Yan Z, Zeng G, Liu S, Wang W, Tan X, Deng J, Tang X, Wang Q. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotoxicol Environ Saf. 2018;148:953–9. https://doi.org/10.1016/j.ecoenv.2017.11.049.
Google Scholar
Gray WM. Hormonal regulation of plant growth and development. PLoS Biol. 2004;2(9):e311. https://doi.org/10.1371/journal.pbio.0020311.
Google Scholar
Miransari M, Smith DL. Plant hormones and seed germination. Environ Exp Bot. 2014;99:110–21. https://doi.org/10.1007/s11258-012-0078-5.
Google Scholar
Oracz K, Voegele A, Tarkowská D, Jacquemoud D, Turečková V, Urbanová T, Strnad M, Sliwinska E, Leubner-Metzger G. Myrigalone a inhibits Lepidium sativum seed germination by interference with Gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture. Plant Cell Physiol. 2012;53(1):81–95. https://doi.org/10.1093/pcp/pcr124.
Google Scholar
García M, García G, Parola R, Maddela NR, Pérez-Almeida I, Garcés-Fiallos FR. Root-shoot ratio and SOD activity are associated with the sensitivity of common bean seedlings to NaCl salinization. Rhizosphere. 2024;29:100848. https://doi.org/10.1016/j.rhisph.2024.100848.
Google Scholar