Parsons PA. Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biol Rev Camb Philos Soc. 2005;80(4):589–610.
Google Scholar
Hughes C, Eastwood R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci U S A. 2006;103(27):10334–9.
Google Scholar
Wang X, Liang D, Jin W, Tang M, Shalayiwu, Liu S, Zhang P. Out of tibet: genomic perspectives on the evolutionary history of extant Pikas. Mol Biol Evol. 2020;37(6):1577–92.
Google Scholar
Dillon RT, Robinson JD. The snails the dinosaurs saw: are the pleurocerid populations of the older Appalachians a relict of the paleozoic era? J N Am Benthol Soc. 2009;28(1):1–11.
Google Scholar
Keith R, Hedin M. Extreme mitochondrial population subdivision in Southern Appalachian paleoendemic spiders (Araneae: hypochilidae: Hypochilus), with implications for species delimitation. J Arachnol. 2012;40(2):167–81.
Google Scholar
Crespi EJ, Rissler LJ, Browne RA. Testing pleistocene refugia theory: phylogeographical analysis of desmognathus wrighti, a high-elevation salamander in the Southern Appalachians. Mol Ecol. 2003;12(4):969–84.
Google Scholar
Meng Q-R, Wang E, Hu J-M. Mesozoic sedimentary evolution of the Northwest Sichuan basin: implication for continued clockwise rotation of the South China block. Geol Soc Am Bull. 2005;117(3–4):396–410.
Google Scholar
Deng T, Wu F, Zhou Z, Su T. Tibetan plateau: an evolutionary junction for the history of modern biodiversity. Sci China Earth Sci. 2020;63(2):172–87.
Google Scholar
Saylor JE, Horton BK. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in miocene volcanic glass from southern Peru. Earth Planet Sci Lett. 2014;387:120–31.
Google Scholar
Sundell KE, Saylor JE, Lapen TJ, Horton BK. Implications of variable late cenozoic surface uplift across the Peruvian central Andes. Sci Rep. 2019;9(1):4877.
Google Scholar
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403(6772):853–8.
Google Scholar
Li Y-F, Wang S-J, Zhou J-Y, Gao C-Q, Zheng C-G, Xue H-J, Bu W-J. Integrative taxonomy of the stalk-eyed bug genus Chauliops (Heteroptera: malcidae: Chauliopinae) reveals orogeny-driven speciation. J Syst Evol. 2023;61(5):932–47.
Google Scholar
An Z, Kutzbach JE, Prell WL, Porter SC. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since late miocene times. Nature. 2001;411(6833):62–6.
Google Scholar
Yao T-d, Zheng D. Uplifting of Tibetan plateau with its environmental effects. Adv Earth Sci. 2006;21:451–8.
Royden LH, Burchfiel BC, van der Hilst RD. The geological evolution of the Tibetan Plateau. Science. 2008;321(5892):1054–8.
Google Scholar
Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS, Yi H, Zhu L, Liu S, Li Y. Constraints on the early uplift history of the Tibetan plateau. Proc Natl Acad Sci U S A. 2008;105(13):4987–92.
Google Scholar
Zhu D-C, Zhao Z-D, Niu Y, Dilek Y, Hou Z-Q, Mo X-X. The origin and pre-Cenozoic evolution of the Tibetan plateau. Gondwana Res. 2013;23(4):1429–54.
Google Scholar
Spicer RA. Tibet, the himalaya, Asian monsoons and biodiversity –. What Ways Are They Related?? Plant Divers. 2017;39(5):233–44.
Google Scholar
Su T, Farnsworth A, Spicer RA, Huang J, Wu FX, Liu J, Li SF, Xing YW, Huang YJ, Deng WYD, et al. No high Tibetan Plateau until the neogene. Sci Adv. 2019;5(3): eaav2189.
Google Scholar
Schluter D. The ecology of adaptive radiation. In. Oxford University Press; 2000.
Gavrilets S, Losos JB. Adaptive radiation: contrasting theory with data. Science. 2009;323(5915):732–7.
Google Scholar
Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev. 2015;90(1):236–53.
Google Scholar
Chang M, Wang X, Liu H, Miao D, Zhao Q, Wu G, Liu J, Li Q, Sun Z, Wang N. Extraordinarily thick-boned fish linked to the aridification of the Qaidam basin (northern Tibetan Plateau). Proc Natl Acad Sci U S A. 2008;105(36):13246–51.
Google Scholar
Griswold C, Ramírez M, Coddington J, Platnick N. Atlas of phylogenetic data for entelegyne spiders (Araneae: araneomorphae: Entelegynae) with comments on their phylogeny. Proc Calif Acad Sci. 2005;56:1–324.
Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr Biol. 2014;24(15):1765–71.
Google Scholar
Garrison NL, Rodriguez J, Agnarsson I, Coddington JA, Griswold CE, Hamilton CA, Hedin M, Kocot KM, Ledford JM, Bond JE. Spider phylogenomics: untangling the spider tree of life. PeerJ. 2016;4:e1719.
Google Scholar
Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, Griswold CE, Hormiga G, Prendini L, Ramírez MJ, Sierwald P, et al. The spider tree of life: phylogeny of araneae based on target-gene analyses from an extensive taxon sampling. Cladistics. 2017;33(6):574–616.
Google Scholar
Fan Z, Wang L-Y, Xiao L, Tan B, Luo B, Ren T-Y, Liu N, Zhang Z-S, Bai M. Lampshade web spider Ectatosticta davidi chromosome-level genome assembly provides evidence for its phylogenetic position. Commun Biol. 2023;6(1): 748.
Google Scholar
Magalhaes ILF, Azevedo GHF, Michalik P, Ramírez MJ. The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the mesozoic. Biol Rev. 2020;95(1):184–217.
Google Scholar
Catley KM. Descriptions of new Hypochilus species from new Mexico and California with a cladistic analysis of the hypochilidae (Araneae). Am Mus Novit. 1994;3088:1–27.
Hedin MC. Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae). Mol Phylogenet Evol. 2001;18(2):238–51.
Google Scholar
Hedin M, Wood DA. Genealogical exclusivity in geographically proximate populations of Hypochilus thorelli Marx (Araneae, Hypochilidae) on the Cumberland plateau of North America. Mol Ecol. 2002;11(10):1975–88.
Google Scholar
Forster RR, Platnick NI, Gray MR. A review of the spider superfamilies Hypochiloidea and Austrochiloidea (Araneae, Araneomorphae). Bull AMNH. 1987;185:1.
Ciaccio E, Debray A, Hedin M. Phylogenomics of paleoendemic lampshade spiders (Araneae, hypochilidae, Hypochilus), with the description of a new species from montane California. ZooKeys. 2022;1086:163–204.
Google Scholar
Yang C, Zheng Y, Tan S, Meng G, Rao W, Yang C-q, Bourne D, O’Brien P, Xu J, Sha L, et al. Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics. 2020;21:862.
Google Scholar
Lin Y, Li S. Four new species of the genus Ectatosticta (Araneae, Hypochilidae) from China. Acta Arachnol Sin. 2021;30(1):1–8.
Li JN, Yan XY, Lin YJ, Li SQ, Chen HF. Challenging Wallacean and linnean shortfalls: Ectatosticta spiders (Araneae, Hypochilidae) from China. Zool Res. 2021;42(6):792–5.
Google Scholar
Wang L-Y, Zhao JX, Irfan M, Zhang Z-S. Review of the spider genus Ectatosticta simon, 1892 (Araneae: Hypochilidae) with description of four new species from China. Zootaxa. 2021;5016(4):523–42.
Google Scholar
Wang L-Y, Zhao J-X, Irfan M, Zhang Z. Further revision of the spider genus Ectatosticta simon, 1892 (Hypochilidae), with the description of three new species. Acta Arachnol Sin. 2021;30(2):91–8.
World Spider. Catalog version 25.5 [http://wsc.nmbe.ch,].
Fryxell PA. The interpretation of disjunct distributions. Taxon. 1967;16(4):316–24.
Google Scholar
Bartish IV, Antonelli A, Richardson JE, Swenson U. Vicariance or long-distance dispersal: historical biogeography of the Pantropical subfamily Chrysophylloideae (Sapotaceae). J Biogeogr. 2011;38(1):177–90.
Google Scholar
Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol Evol. 2012;27(1):47–56.
Google Scholar
Popp M, Mirré V, Brochmann C. A single mid-Pleistocene long-distance dispersal by a bird can explain the extreme bipolar disjunction in crowberries (Empetrum). Proc Natl Acad Sci U S A. 2011;108(16):6520–5.
Google Scholar
Villaverde T, Escudero M, Luceño M, Martín-Bravo S. Long-distance dispersal during the middle–late Pleistocene explains the bipolar disjunction of Carex maritima (Cyperaceae). J Biogeogr. 2015;42(10):1820–31.
Google Scholar
Trewick S. Plate tectonics in biogeography. In: Int Encyclopedia Geogr. 2017: 1–9.
Derkarabetian S, Baker CM, Giribet G. Complex patterns of Gondwanan biogeography revealed in a dispersal-limited arachnid. J Biogeogr. 2021;48(6):1336–52.
Google Scholar
Villastrigo A, Lam A, Van Dam MH, Scheunert A, Hájek J, Hendrich L, Michat MC, Megna Y, Figueroa L, Zenteno N, et al. Plate tectonics, cold adaptation and long-distance range expansion to remote archipelagos and the high Andes as drivers of a circumantarctic freshwater arthropod radiation. Mol Phylogenet Evol. 2025;204: 108279.
Google Scholar
Meng G, Li Y, Yang C, Liu S. Mitoz: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019;47(11): e63.
Google Scholar
Donath A, Jühling F, Al-Arab M, Bernhart SH, Reinhardt F, Stadler PF, Middendorf M, Bernt M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019;47(20):10543–52.
Google Scholar
Brasseur MV, Astrin JJ, Geiger MF, Mayer C. Mitogeneextractor: efficient extraction of mitochondrial genes from next-generation sequencing libraries. Methods Ecol Evol. 2023;14(4):1017–24.
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Google Scholar
Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studie. Front Zool. 2014;11:81.
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772.
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.
Google Scholar
Penney D, Selden PA. The oldest linyphiid spider, in lower cretaceous Lebanese amber (Araneae, Linyphiidae, Linyphiinae). J Arachnol. 2002;30:487–93.
Google Scholar
Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac Res. 2012;37:155–63.
Google Scholar
Selden PA, Penney D. Fossil spiders. Biol Rev Camb Philos Soc. 2010;85(1):171–206.
Google Scholar
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4(1): vey016.
Google Scholar
Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/]
BioGeoBEARS. Biogeography with bayesian and likelihood evolutionary analysis in R scripts. Available at cran.r-project.org/web/packages/BioGeoBEARS/
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of maxent for ecologists. Divers Distrib. 2011;17(1):43–57.
Google Scholar
Li JN, Yan XY, Lin YJ, Li SQ, Chen HF. Challenging Wallacean and Linnean shortfalls: Ectatosticta spiders (Araneae, Hypochilidae) from China. Zool Res. 2021;42(6):792–5.
Google Scholar
Platnick N, Jaeger P. A new species of the basal araneomorph spider genus Ectatosticta. ZooKeys. 2009;16:209–15.
Google Scholar
Esri. ArcGIS desktop: release 10.8. In: Redlands. CA: Environmental Systems Research Institute; 2020.
Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One. 2014;9(2):e89543.
Google Scholar
Stadler T. Mammalian phylogeny reveals recent diversification rate shifts. Proc Natl Acad Sci U S A. 2011;108(15):6187–92.
Google Scholar
Pons J, Bover P, Bidegaray-Batista L, Arnedo MA. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics. 2019;20(1):665.
Google Scholar
Masta SE, Boore JL. Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Mol Biol Evol. 2008;25(5):949–59.
Google Scholar
Miao Y, Fang X, Sun J, Xiao W, Yang Y, Wang X, Farnsworth A, Huang K, Ren Y, Wu F, et al. A new biologic paleoaltimetry indicating late miocene rapid uplift of Northern Tibet plateau. Science. 2022;378(6624):1074–9.
Google Scholar
Mercier JL, Vergely P, Zhang YQ, Hou MJ, Bellier O, Wang YM. Structural records of the late Cretaceous–Cenozoic extension in Eastern China and the kinematics of the Southern Tan-Lu and Qinling fault zone (Anhui and Shaanxi provinces, PR China). Tectonophysics. 2013;582:50–75.
Google Scholar
Ding L, Kapp P, Cai F, Garzione CN, Xiong Z, Wang H, Wang C. Timing and mechanisms of Tibetan Plateau uplift. Nat Rev Earth Environ. 2022;3(10):652–67.
Google Scholar
Mulch A, Chamberlain CP. The rise and growth of Tibet. Nature. 2006;439(7077):670–1.
Google Scholar
Meng Q-R. Origin of the Qinling Mountains(in Chinese). Scientia Sinica Terrae. 2017;47(4):412–20.
Shi X, Yang Z, Dong Y, Zhou B. Tectonic uplift of the Northern Qinling mountains (Central China) during the late cenozoic: evidence from DEM-based geomorphological analysis. J Asian Earth Sci. 2019;184: 104005.
Google Scholar
Blakey RC, Ranney WD. Ancient landscapes of Western North america: A geologic history with paleogeographic maps. Switzerland: Springer; 2018. pp. 140–76.
Google Scholar
Vieites DR, Min M-S, Wake DB. Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc Natl Acad Sci U S A. 2007;104(50):19903–7.
Google Scholar
Bird P. Formation of the Rocky Mountains, Western United States: a continuum computer model. Science. 1988;239(4847):1501–7.
Google Scholar
Cassel EJ, Graham SA, Chamberlain CP. Cenozoic tectonic and topographic evolution of the Northern Sierra Nevada, California,through stable isotope paleoaltimetry in volcanic glass. Geology. 2009;37:547–50.
Google Scholar
Mulch A, Graham SA, Chamberlain CP. Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada. Science. 2006;313:87–9.
Google Scholar
Jess S, Enkelmann E, Matthews WA. Why are the Appalachians high? New insights from detrital apatite laser ablation (U-Th-Sm)/He dating. Earth Planet Sci Lett. 2022;597: 117794.
Google Scholar