Yin X, Xie Q, Huang L, Liu L, Armstrong E, Zhen M, et al. Assessment of the psychological burden among family caregivers of people living with alzheimer’s disease using the Zarit burden interview. J Alzheimers Dis. 2021;82(1):285–91. https://doi.org/10.3233/JAD-210025.
Google Scholar
Wang X, Huang W, Su L, Xing Y, Jessen F, Sun Y, et al. Neuroimaging advances regarding subjective cognitive decline in preclinical alzheimer’s disease. Mol Neurodegeneration. 2020;15(1):55. https://doi.org/10.1186/s13024-020-00395-3.
Google Scholar
Rabin LA, Smart CM, Amariglio RE. Subjective cognitive decline in preclinical alzheimer’s disease. Ann Rev Clin Psychol. 2017;13:369–96. https://doi.org/10.1146/annurev-clinpsy-032816-045136.
Google Scholar
Liew TM. Trajectories of subjective cognitive decline, and the risk of mild cognitive impairment and dementia. Alzheimers Res Ther. 2020;12(1):135. https://doi.org/10.1186/s13195-020-00699-y.
Google Scholar
Rosenberg PB, Lyketsos C. Mild cognitive impairment: searching for the prodrome of alzheimer’s disease. World Psychiatry: Official J World Psychiatric Association (WPA). 2008;7(2):72–8. https://doi.org/10.1002/j.2051-5545.2008.tb00159.x.
Google Scholar
Sperling RA, Donohue MC, Raman R, Sun CK, Yaari R, Holdridge K, et al. Association of factors with elevated amyloid burden in clinically normal older individuals. JAMA Neurol. 2020;77(6):735. https://doi.org/10.1001/jamaneurol.2020.0387.
Google Scholar
Si T, Xing G, Han Y. Subjective cognitive decline and related cognitive deficits. Front Neurol. 2020;11:247. https://doi.org/10.3389/fneur.2020.00247.
Google Scholar
Sheng C, Yang K, Wang X, Li H, Li T, Lin L, et al. Advances in Non-Pharmacological interventions for subjective cognitive decline: A systematic review and Meta-Analysis. J Alzheimers Dis. 2020;77(2):903–20. https://doi.org/10.3233/jad-191295.
Google Scholar
Tromp D, Dufour A, Lithfous S, Pebayle T, Després O. Episodic memory in normal aging and alzheimer disease: insights from imaging and behavioral studies. Ageing Res Rev. 2015;24(Pt B):232–62. https://doi.org/10.1016/j.arr.2015.08.006.
Google Scholar
Xue G. The neural representations underlying human episodic memory. Trends Cogn Sci. 2018;22(6):544–61. https://doi.org/10.1016/j.tics.2018.03.004.
Google Scholar
Yu Q, Cheval B, Becker B, Herold F, Chan CCH, Delevoye-Turrell YN, et al. Episodic memory encoding and retrieval in Face-Name paired paradigm: an fNIRS study. Brain Sci. 2021;11(7). https://doi.org/10.3390/brainsci11070951.
Torres-Morales C, Cansino S. Brain representations of space and time in episodic memory: A systematic review and meta-analysis. Cogn Affect Behav Neurosci. 2024;24(1):1–18. https://doi.org/10.3758/s13415-023-01140-1.
Google Scholar
Ergis AM, Eusop-Roussel E. [Early episodic memory impairments in alzheimer’s disease]. Rev Neurol. 2008;164(Suppl 3):S96–s. https://doi.org/10.1016/s0035-3787(08)73298-3.
Google Scholar
Takehara-Nishiuchi K. Prefrontal-hippocampal interaction during the encoding of new memories. Brain Neurosci Adv. 2020;4:2398212820925580. https://doi.org/10.1177/2398212820925580.
Google Scholar
Zhu Y, Zang F, Wang Q, Zhang Q, Tan C, Zhang S, et al. Connectome-based model predicts episodic memory performance in individuals with subjective cognitive decline and amnestic mild cognitive impairment. Behav Brain Res. 2021;411:113387. https://doi.org/10.1016/j.bbr.2021.113387.
Google Scholar
Vidal-Piñeiro D, Martin-Trias P, Arenaza-Urquijo EM, Sala-Llonch R, Clemente IC, Mena-Sánchez I, et al. Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging. Brain Stimul. 2014;7(2):287–96. https://doi.org/10.1016/j.brs.2013.12.016.
Google Scholar
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev. 2022;102(1):269–318. https://doi.org/10.1152/physrev.00039.2020.
Google Scholar
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-beta protein dimers isolated directly from alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14(8):837–42. https://doi.org/10.1038/nm1782.
Google Scholar
Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in alzheimer’s disease. Neuron. 2004;44(1):181–93. https://doi.org/10.1016/j.neuron.2004.09.010.
Google Scholar
Motta C, Di Lorenzo F, Ponzo V, Pellicciari MC, Bonnì S, Picazio S, et al. Transcranial magnetic stimulation predicts cognitive decline in patients with alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2018;89(12):1237–42. https://doi.org/10.1136/jnnp-2017-317879.
Google Scholar
Di Lorenzo F, Motta C, Casula EP, Bonnì S, Assogna M, Caltagirone C, et al. LTP-like cortical plasticity predicts conversion to dementia in patients with memory impairment. Brain Stimul. 2020;13(5):1175–82. https://doi.org/10.1016/j.brs.2020.05.013.
Google Scholar
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, et al. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiology: Official J Int Federation Clin Neurophysiol. 2021;132(10):2568–607. https://doi.org/10.1016/j.clinph.2021.05.035.
Google Scholar
Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci. 2020;23(11):1421–32. https://doi.org/10.1038/s41593-020-00711-6.
Google Scholar
Di Lorenzo F, Ponzo V, Bonnì S, Motta C, Negrão Serra PC, Bozzali M, et al. Long-term potentiation-like cortical plasticity is disrupted in alzheimer’s disease patients independently from age of onset. Ann Neurol. 2016;80(2):202–10. https://doi.org/10.1002/ana.24695.
Google Scholar
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiology: Official J Int Federation Clin Neurophysiol. 2020;131(2):474–528. https://doi.org/10.1016/j.clinph.2019.11.002.
Google Scholar
Suppa A, Li Voti P, Rocchi L, Papazachariadis O, Berardelli A. Early visuomotor integration processes induce LTP/LTD-like plasticity in the human motor cortex. Cerebral cortex (New York, NY: 1991). 2015;25(3):703-12. https://doi.org/10.1093/cercor/bht264.
Cirillo G, Di Pino G, Capone F, Ranieri F, Florio L, Todisco V, et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10(1):1–18. https://doi.org/10.1016/j.brs.2016.11.009.
Google Scholar
Solé-Padullés C, Bartrés-Faz D, Junqué C, Clemente IC, Molinuevo JL, Bargalló N et al. Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham-controlled study. Cerebral cortex (New York, NY: 1991). 2006;16(10):1487-93. https://doi.org/10.1093/cercor/bhj083.
Liu M, Nie ZY, Li RR, Zhang W, Huang LH, Wang JQ, et al. Neural mechanism of repeated transcranial magnetic stimulation to enhance visual working memory in elderly individuals with subjective cognitive decline. Front Neurol. 2021;12:665218. https://doi.org/10.3389/fneur.2021.665218.
Google Scholar
Liang X, Xue C, Zheng D, Yuan Q, Qi W, Ruan Y, et al. Repetitive transcranial magnetic stimulation regulates effective connectivity patterns of brain networks in the spectrum of preclinical alzheimer’s disease. Front Aging Neurosci. 2024;16:1343926. https://doi.org/10.3389/fnagi.2024.1343926.
Google Scholar
Lin Y, Jiang WJ, Shan PY, Lu M, Wang T, Li RH, et al. The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of cognitive impairment in patients with alzheimer’s disease: A systematic review and meta-analysis. J Neurol Sci. 2019;398:184–91. https://doi.org/10.1016/j.jns.2019.01.038.
Google Scholar
Zhang T, Sui Y, Lu Q, Xu X, Zhu Y, Dai W, et al. Effects of rTMS treatment on global cognitive function in alzheimer’s disease: A systematic review and meta-analysis. Front Aging Neurosci. 2022;14:984708. https://doi.org/10.3389/fnagi.2022.984708.
Google Scholar
Hauer L, Sellner J, Brigo F, Trinka E, Sebastianelli L, Saltuari L, et al. Effects of repetitive transcranial magnetic stimulation over prefrontal cortex on attention in psychiatric disorders: A systematic review. J Clin Med. 2019;8(4). https://doi.org/10.3390/jcm8040416.
Balconi M. Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull. 2013;29(3):381–9. https://doi.org/10.1007/s12264-013-1309-z.
Google Scholar
Li Y, Wang L, Jia M, Guo J, Wang H, Wang M. The effects of high-frequency rTMS over the left DLPFC on cognitive control in young healthy participants. PLoS ONE. 2017;12(6):e0179430. https://doi.org/10.1371/journal.pone.0179430.
Google Scholar
Davis SW, Luber B, Murphy DLK, Lisanby SH, Cabeza R. Frequency-specific neuromodulation of local and distant connectivity in aging and episodic memory function. Hum Brain Mapp. 2017;38(12):5987–6004. https://doi.org/10.1002/hbm.23803.
Google Scholar
Li X, Qi G, Yu C, Lian G, Zheng H, Wu S, et al. Cortical plasticity is correlated with cognitive improvement in alzheimer’s disease patients after rTMS treatment. Brain Stimul. 2021;14(3):503–10. https://doi.org/10.1016/j.brs.2021.01.012.
Google Scholar
Wu Q, Xu X, Zhai C, Zhao Z, Dai W, Wang T, et al. High-frequency repetitive transcranial magnetic stimulation improves Spatial episodic learning and memory performance by regulating brain plasticity in healthy rats. Front NeuroSci. 2022;16:974940. https://doi.org/10.3389/fnins.2022.974940.
Google Scholar
Zhang T, Huang S, Lu Q, Song J, Teng J, Wang T, et al. Effects of repetitive transcranial magnetic stimulation on episodic memory in patients with subjective cognitive decline: study protocol for a randomized clinical trial. Front Psychol. 2023;14:1298065. https://doi.org/10.3389/fpsyg.2023.1298065.
Google Scholar
Zhong Q, Ali N, Gao Y, Wu H, Wu X, Sun C, et al. Gait kinematic and kinetic characteristics of older adults with mild cognitive impairment and subjective cognitive decline: A Cross-Sectional study. Front Aging Neurosci. 2021;13:664558. https://doi.org/10.3389/fnagi.2021.664558.
Google Scholar
Shen Y, Lu Q, Zhang T, Yan H, Mansouri N, Osipowicz K, et al. Use of machine learning to identify functional connectivity changes in a clinical cohort of patients at risk for dementia. Front Aging Neurosci. 2022;14:962319. https://doi.org/10.3389/fnagi.2022.962319.
Google Scholar
Jia Y, Xu L, Yang K, Zhang Y, Lv X, Zhu Z, et al. Precision repetitive transcranial magnetic stimulation over the left parietal cortex improves memory in alzheimer’s disease: A randomized, Double-Blind, Sham-Controlled study. Front Aging Neurosci. 2021;13:693611. https://doi.org/10.3389/fnagi.2021.693611.
Google Scholar
Beam W, Borckardt JJ, Reeves ST, George MS. An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimul. 2009;2(1):50–4. https://doi.org/10.1016/j.brs.2008.09.006.
Google Scholar
Li Q, MIAO Y, ZHONG Y. Auditory verbal learning test-HuaShan version in the diagnosis of amnestic mild cognitive impairment. Geriatr Health Care. 2016;22(5):282–5.
Z Q, G Y. Application of auditory verbal learning test-Huashan version in patients with subjective cognitive decline and mild cognitive impairment. Chin J Rehabilitation Med. 2024;39(2):191–5.
Yu F, Tang X, Hu R, Liang S, Wang W, Tian S, et al. The After-Effect of accelerated intermittent theta burst stimulation at different session intervals. Front NeuroSci. 2020;14:576. https://doi.org/10.3389/fnins.2020.00576.
Google Scholar
Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201. https://doi.org/10.1016/j.neuron.2004.12.033.
Google Scholar
Kensara OA, Helal OF, El-Kafy EMA, Ghafouri KJ, Ghaith MM, Alsolami FJ, et al. The combined effect of vitamin D deficiency and hyperparathyroidism on postural stability among healthy adult males. Pakistan J Biol Sciences: PJBS. 2019;22(9):406–11. https://doi.org/10.3923/pjbs.2019.406.411.
Google Scholar
Freedberg MV, Reeves JA, Fioriti CM, Murillo J, Wassermann EM. Reproducing the effect of hippocampal network-targeted transcranial magnetic stimulation on episodic memory. Behav Brain Res. 2022;419:113707. https://doi.org/10.1016/j.bbr.2021.113707.
Google Scholar
van der Plas M, Braun V, Stauch BJ, Hanslmayr S. Stimulation of the left dorsolateral prefrontal cortex with slow rTMS enhances verbal memory formation. PLoS Biol. 2021;19(9):e3001363. https://doi.org/10.1371/journal.pbio.3001363.
Google Scholar
Traikapi A, Kalli I, Kyriakou A, Stylianou E, Symeou RT, Kardama A, et al. Episodic memory effects of gamma frequency precuneus transcranial magnetic stimulation in alzheimer’s disease: A randomized multiple baseline study. J Neuropsychol. 2023;17(2):279–301. https://doi.org/10.1111/jnp.12299.
Google Scholar
Hoy KE, Emonson MRL, Bailey NW, Rogers C, Coyle H, Stockman F, et al. Gamma connectivity predicts response to intermittent theta burst stimulation in alzheimer’s disease: a randomized controlled trial. Neurobiol Aging. 2023;132:13–23. https://doi.org/10.1016/j.neurobiolaging.2023.08.006.
Google Scholar
Canas PM, Simões AP, Rodrigues RJ, Cunha RA. Predominant loss of glutamatergic terminal markers in a β-amyloid peptide model of Alzheimer’s disease. Neuropharmacol 2014;76 Pt A:51–610.1016/j.neuropharm.2013.08.026
Koch G, Bonnì S, Pellicciari MC, Casula EP, Mancini M, Esposito R, et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal alzheimer’s disease. NeuroImage. 2018;169:302–11. https://doi.org/10.1016/j.neuroimage.2017.12.048.
Google Scholar
Cui X, Ren W, Zheng Z, Li J. Repetitive transcranial magnetic stimulation improved source memory and modulated Recollection-Based retrieval in healthy older adults. Front Psychol. 2020;11:1137. https://doi.org/10.3389/fpsyg.2020.01137.
Google Scholar
Zhao Q, Lv Y, Zhou Y, Hong Z, Guo Q. Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment. PLoS ONE. 2012;7(12):e51157. https://doi.org/10.1371/journal.pone.0051157.
Google Scholar
Ma J, Zheng MX, Wu JJ, Xing XX, Xiang YT, Wei D, et al. Mapping the long-term delayed recall-based cortex-hippocampus network constrained by the structural and functional connectome: a case-control multimodal MRI study. Alzheimers Res Ther. 2023;15(1):61. https://doi.org/10.1186/s13195-023-01197-7.
Google Scholar
Jin J, Maren S. Prefrontal-Hippocampal interactions in memory and emotion. Front Syst Neurosci. 2015;9:170. https://doi.org/10.3389/fnsys.2015.00170.
Google Scholar
Ye Z, Shi L, Li A, Chen C, Xue G. Retrieval practice facilitates memory updating by enhancing and differentiating medial prefrontal cortex representations. eLife. 2020;9. https://doi.org/10.7554/eLife.57023.
Kluen LM, Dandolo LC, Jocham G, Schwabe L. Dorsolateral Prefrontal Cortex Enables Updating of Established Memories. Cerebral cortex (New York, NY: 1991). 2019;29(10):4154-68. https://doi.org/10.1093/cercor/bhy298
Higo T, Mars RB, Boorman ED, Buch ER, Rushworth MF. Distributed and causal influence of frontal operculum in task control. Proc Natl Acad Sci USA. 2011;108(10):4230–5. https://doi.org/10.1073/pnas.1013361108.
Google Scholar
Manenti R, Brambilla M, Petesi M, Ferrari C, Cotelli M. Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Front Aging Neurosci. 2013;5:49. https://doi.org/10.3389/fnagi.2013.00049.
Google Scholar
Manenti R, Sandrini M, Gobbi E, Cobelli C, Brambilla M, Binetti G, et al. Strengthening of existing episodic memories through Non-invasive stimulation of prefrontal cortex in older adults with subjective memory complaints. Front Aging Neurosci. 2017;9:401. https://doi.org/10.3389/fnagi.2017.00401.
Google Scholar
Scarmeas N, Stern Y. fMRI evidence of compensatory mechanisms in older adults at genetic risk for alzheimer disease. Neurology. 2005;65(9):1514–5. https://doi.org/10.1212/wnl.65.9.1514-a. author reply – 5.
Google Scholar
Gigi A, Babai R, Penker A, Hendler T, Korczyn AD. Prefrontal compensatory mechanism May enable normal semantic memory performance in mild cognitive impairment (MCI). J Neuroimaging: Official J Am Soc Neuroimaging. 2010;20(2):163–8. https://doi.org/10.1111/j.1552-6569.2009.00386.x.
Google Scholar
Erk S, Spottke A, Meisen A, Wagner M, Walter H, Jessen F. Evidence of neuronal compensation during episodic memory in subjective memory impairment. Arch Gen Psychiatry. 2011;68(8):845–52. https://doi.org/10.1001/archgenpsychiatry.2011.80.
Google Scholar
Haley MS, Maffei A. Versatility and flexibility of cortical circuits. The neuroscientist: a review journal bringing neurobiology. Neurol Psychiatry. 2018;24(5):456–70. https://doi.org/10.1177/1073858417733720.
Google Scholar
Mansvelder HD, Verhoog MB, Goriounova NA. Synaptic plasticity in human cortical circuits: cellular mechanisms of learning and memory in the human brain? Current opinion in neurobiology. 2019;54:186–9310.1016/j.conb.2018.06.013
Stampanoni Bassi M, Iezzi E, Gilio L, Centonze D, Buttari F. Synaptic plasticity shapes brain connectivity: implications for network topology. Int J Mol Sci. 2019;20(24). https://doi.org/10.3390/ijms20246193.
Francesco DL, Koch G. Synaptic impairment: the new battlefield of alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc. 2021;17(2):314. https://doi.org/10.1002/alz.12189.
Google Scholar
Buss SS, Press DZ, McDonald K, Kitchener E, O’Connor M, Donohoe K, et al. LTP-like plasticity is impaired in amyloid-positive amnestic MCI but independent of PET-amyloid burden. Neurobiol Aging. 2020;96:109–16. https://doi.org/10.1016/j.neurobiolaging.2020.08.021.
Google Scholar
Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF, et al. Incidence and impact of subclinical epileptiform activity in alzheimer’s disease. Ann Neurol. 2016;80(6):858–70. https://doi.org/10.1002/ana.24794.
Google Scholar
Styr B, Slutsky I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase alzheimer’s disease. Nat Neurosci. 2018;21(4):463–73. https://doi.org/10.1038/s41593-018-0080-x.
Google Scholar