Enhanced episodic memory and LTP-like plasticity in subjective cognitive decline following 10-Hz repetitive transcranial magnetic stimulation | Journal of NeuroEngineering and Rehabilitation

  • Yin X, Xie Q, Huang L, Liu L, Armstrong E, Zhen M, et al. Assessment of the psychological burden among family caregivers of people living with alzheimer’s disease using the Zarit burden interview. J Alzheimers Dis. 2021;82(1):285–91. https://doi.org/10.3233/JAD-210025.

    Article 
    PubMed 

    Google Scholar 

  • Wang X, Huang W, Su L, Xing Y, Jessen F, Sun Y, et al. Neuroimaging advances regarding subjective cognitive decline in preclinical alzheimer’s disease. Mol Neurodegeneration. 2020;15(1):55. https://doi.org/10.1186/s13024-020-00395-3.

    Article 

    Google Scholar 

  • Rabin LA, Smart CM, Amariglio RE. Subjective cognitive decline in preclinical alzheimer’s disease. Ann Rev Clin Psychol. 2017;13:369–96. https://doi.org/10.1146/annurev-clinpsy-032816-045136.

    Article 

    Google Scholar 

  • Liew TM. Trajectories of subjective cognitive decline, and the risk of mild cognitive impairment and dementia. Alzheimers Res Ther. 2020;12(1):135. https://doi.org/10.1186/s13195-020-00699-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosenberg PB, Lyketsos C. Mild cognitive impairment: searching for the prodrome of alzheimer’s disease. World Psychiatry: Official J World Psychiatric Association (WPA). 2008;7(2):72–8. https://doi.org/10.1002/j.2051-5545.2008.tb00159.x.

    Article 

    Google Scholar 

  • Sperling RA, Donohue MC, Raman R, Sun CK, Yaari R, Holdridge K, et al. Association of factors with elevated amyloid burden in clinically normal older individuals. JAMA Neurol. 2020;77(6):735. https://doi.org/10.1001/jamaneurol.2020.0387.

    Article 
    PubMed 

    Google Scholar 

  • Si T, Xing G, Han Y. Subjective cognitive decline and related cognitive deficits. Front Neurol. 2020;11:247. https://doi.org/10.3389/fneur.2020.00247.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheng C, Yang K, Wang X, Li H, Li T, Lin L, et al. Advances in Non-Pharmacological interventions for subjective cognitive decline: A systematic review and Meta-Analysis. J Alzheimers Dis. 2020;77(2):903–20. https://doi.org/10.3233/jad-191295.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tromp D, Dufour A, Lithfous S, Pebayle T, Després O. Episodic memory in normal aging and alzheimer disease: insights from imaging and behavioral studies. Ageing Res Rev. 2015;24(Pt B):232–62. https://doi.org/10.1016/j.arr.2015.08.006.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xue G. The neural representations underlying human episodic memory. Trends Cogn Sci. 2018;22(6):544–61. https://doi.org/10.1016/j.tics.2018.03.004.

    Article 
    PubMed 

    Google Scholar 

  • Yu Q, Cheval B, Becker B, Herold F, Chan CCH, Delevoye-Turrell YN, et al. Episodic memory encoding and retrieval in Face-Name paired paradigm: an fNIRS study. Brain Sci. 2021;11(7). https://doi.org/10.3390/brainsci11070951.

  • Torres-Morales C, Cansino S. Brain representations of space and time in episodic memory: A systematic review and meta-analysis. Cogn Affect Behav Neurosci. 2024;24(1):1–18. https://doi.org/10.3758/s13415-023-01140-1.

    Article 
    PubMed 

    Google Scholar 

  • Ergis AM, Eusop-Roussel E. [Early episodic memory impairments in alzheimer’s disease]. Rev Neurol. 2008;164(Suppl 3):S96–s. https://doi.org/10.1016/s0035-3787(08)73298-3.

    Article 
    PubMed 

    Google Scholar 

  • Takehara-Nishiuchi K. Prefrontal-hippocampal interaction during the encoding of new memories. Brain Neurosci Adv. 2020;4:2398212820925580. https://doi.org/10.1177/2398212820925580.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu Y, Zang F, Wang Q, Zhang Q, Tan C, Zhang S, et al. Connectome-based model predicts episodic memory performance in individuals with subjective cognitive decline and amnestic mild cognitive impairment. Behav Brain Res. 2021;411:113387. https://doi.org/10.1016/j.bbr.2021.113387.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vidal-Piñeiro D, Martin-Trias P, Arenaza-Urquijo EM, Sala-Llonch R, Clemente IC, Mena-Sánchez I, et al. Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging. Brain Stimul. 2014;7(2):287–96. https://doi.org/10.1016/j.brs.2013.12.016.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev. 2022;102(1):269–318. https://doi.org/10.1152/physrev.00039.2020.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-beta protein dimers isolated directly from alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14(8):837–42. https://doi.org/10.1038/nm1782.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in alzheimer’s disease. Neuron. 2004;44(1):181–93. https://doi.org/10.1016/j.neuron.2004.09.010.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Motta C, Di Lorenzo F, Ponzo V, Pellicciari MC, Bonnì S, Picazio S, et al. Transcranial magnetic stimulation predicts cognitive decline in patients with alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2018;89(12):1237–42. https://doi.org/10.1136/jnnp-2017-317879.

    Article 
    PubMed 

    Google Scholar 

  • Di Lorenzo F, Motta C, Casula EP, Bonnì S, Assogna M, Caltagirone C, et al. LTP-like cortical plasticity predicts conversion to dementia in patients with memory impairment. Brain Stimul. 2020;13(5):1175–82. https://doi.org/10.1016/j.brs.2020.05.013.

    Article 
    PubMed 

    Google Scholar 

  • Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, et al. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiology: Official J Int Federation Clin Neurophysiol. 2021;132(10):2568–607. https://doi.org/10.1016/j.clinph.2021.05.035.

    Article 

    Google Scholar 

  • Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci. 2020;23(11):1421–32. https://doi.org/10.1038/s41593-020-00711-6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Di Lorenzo F, Ponzo V, Bonnì S, Motta C, Negrão Serra PC, Bozzali M, et al. Long-term potentiation-like cortical plasticity is disrupted in alzheimer’s disease patients independently from age of onset. Ann Neurol. 2016;80(2):202–10. https://doi.org/10.1002/ana.24695.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiology: Official J Int Federation Clin Neurophysiol. 2020;131(2):474–528. https://doi.org/10.1016/j.clinph.2019.11.002.

    Article 

    Google Scholar 

  • Suppa A, Li Voti P, Rocchi L, Papazachariadis O, Berardelli A. Early visuomotor integration processes induce LTP/LTD-like plasticity in the human motor cortex. Cerebral cortex (New York, NY: 1991). 2015;25(3):703-12. https://doi.org/10.1093/cercor/bht264.

  • Cirillo G, Di Pino G, Capone F, Ranieri F, Florio L, Todisco V, et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10(1):1–18. https://doi.org/10.1016/j.brs.2016.11.009.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Solé-Padullés C, Bartrés-Faz D, Junqué C, Clemente IC, Molinuevo JL, Bargalló N et al. Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham-controlled study. Cerebral cortex (New York, NY: 1991). 2006;16(10):1487-93. https://doi.org/10.1093/cercor/bhj083.

  • Liu M, Nie ZY, Li RR, Zhang W, Huang LH, Wang JQ, et al. Neural mechanism of repeated transcranial magnetic stimulation to enhance visual working memory in elderly individuals with subjective cognitive decline. Front Neurol. 2021;12:665218. https://doi.org/10.3389/fneur.2021.665218.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang X, Xue C, Zheng D, Yuan Q, Qi W, Ruan Y, et al. Repetitive transcranial magnetic stimulation regulates effective connectivity patterns of brain networks in the spectrum of preclinical alzheimer’s disease. Front Aging Neurosci. 2024;16:1343926. https://doi.org/10.3389/fnagi.2024.1343926.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin Y, Jiang WJ, Shan PY, Lu M, Wang T, Li RH, et al. The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of cognitive impairment in patients with alzheimer’s disease: A systematic review and meta-analysis. J Neurol Sci. 2019;398:184–91. https://doi.org/10.1016/j.jns.2019.01.038.

    Article 
    PubMed 

    Google Scholar 

  • Zhang T, Sui Y, Lu Q, Xu X, Zhu Y, Dai W, et al. Effects of rTMS treatment on global cognitive function in alzheimer’s disease: A systematic review and meta-analysis. Front Aging Neurosci. 2022;14:984708. https://doi.org/10.3389/fnagi.2022.984708.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hauer L, Sellner J, Brigo F, Trinka E, Sebastianelli L, Saltuari L, et al. Effects of repetitive transcranial magnetic stimulation over prefrontal cortex on attention in psychiatric disorders: A systematic review. J Clin Med. 2019;8(4). https://doi.org/10.3390/jcm8040416.

  • Balconi M. Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull. 2013;29(3):381–9. https://doi.org/10.1007/s12264-013-1309-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Y, Wang L, Jia M, Guo J, Wang H, Wang M. The effects of high-frequency rTMS over the left DLPFC on cognitive control in young healthy participants. PLoS ONE. 2017;12(6):e0179430. https://doi.org/10.1371/journal.pone.0179430.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis SW, Luber B, Murphy DLK, Lisanby SH, Cabeza R. Frequency-specific neuromodulation of local and distant connectivity in aging and episodic memory function. Hum Brain Mapp. 2017;38(12):5987–6004. https://doi.org/10.1002/hbm.23803.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li X, Qi G, Yu C, Lian G, Zheng H, Wu S, et al. Cortical plasticity is correlated with cognitive improvement in alzheimer’s disease patients after rTMS treatment. Brain Stimul. 2021;14(3):503–10. https://doi.org/10.1016/j.brs.2021.01.012.

    Article 
    PubMed 

    Google Scholar 

  • Wu Q, Xu X, Zhai C, Zhao Z, Dai W, Wang T, et al. High-frequency repetitive transcranial magnetic stimulation improves Spatial episodic learning and memory performance by regulating brain plasticity in healthy rats. Front NeuroSci. 2022;16:974940. https://doi.org/10.3389/fnins.2022.974940.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang T, Huang S, Lu Q, Song J, Teng J, Wang T, et al. Effects of repetitive transcranial magnetic stimulation on episodic memory in patients with subjective cognitive decline: study protocol for a randomized clinical trial. Front Psychol. 2023;14:1298065. https://doi.org/10.3389/fpsyg.2023.1298065.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong Q, Ali N, Gao Y, Wu H, Wu X, Sun C, et al. Gait kinematic and kinetic characteristics of older adults with mild cognitive impairment and subjective cognitive decline: A Cross-Sectional study. Front Aging Neurosci. 2021;13:664558. https://doi.org/10.3389/fnagi.2021.664558.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen Y, Lu Q, Zhang T, Yan H, Mansouri N, Osipowicz K, et al. Use of machine learning to identify functional connectivity changes in a clinical cohort of patients at risk for dementia. Front Aging Neurosci. 2022;14:962319. https://doi.org/10.3389/fnagi.2022.962319.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia Y, Xu L, Yang K, Zhang Y, Lv X, Zhu Z, et al. Precision repetitive transcranial magnetic stimulation over the left parietal cortex improves memory in alzheimer’s disease: A randomized, Double-Blind, Sham-Controlled study. Front Aging Neurosci. 2021;13:693611. https://doi.org/10.3389/fnagi.2021.693611.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beam W, Borckardt JJ, Reeves ST, George MS. An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimul. 2009;2(1):50–4. https://doi.org/10.1016/j.brs.2008.09.006.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Q, MIAO Y, ZHONG Y. Auditory verbal learning test-HuaShan version in the diagnosis of amnestic mild cognitive impairment. Geriatr Health Care. 2016;22(5):282–5.

    Google Scholar 

  • Z Q, G Y. Application of auditory verbal learning test-Huashan version in patients with subjective cognitive decline and mild cognitive impairment. Chin J Rehabilitation Med. 2024;39(2):191–5.

    Google Scholar 

  • Yu F, Tang X, Hu R, Liang S, Wang W, Tian S, et al. The After-Effect of accelerated intermittent theta burst stimulation at different session intervals. Front NeuroSci. 2020;14:576. https://doi.org/10.3389/fnins.2020.00576.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201. https://doi.org/10.1016/j.neuron.2004.12.033.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kensara OA, Helal OF, El-Kafy EMA, Ghafouri KJ, Ghaith MM, Alsolami FJ, et al. The combined effect of vitamin D deficiency and hyperparathyroidism on postural stability among healthy adult males. Pakistan J Biol Sciences: PJBS. 2019;22(9):406–11. https://doi.org/10.3923/pjbs.2019.406.411.

    Article 
    CAS 

    Google Scholar 

  • Freedberg MV, Reeves JA, Fioriti CM, Murillo J, Wassermann EM. Reproducing the effect of hippocampal network-targeted transcranial magnetic stimulation on episodic memory. Behav Brain Res. 2022;419:113707. https://doi.org/10.1016/j.bbr.2021.113707.

    Article 
    PubMed 

    Google Scholar 

  • van der Plas M, Braun V, Stauch BJ, Hanslmayr S. Stimulation of the left dorsolateral prefrontal cortex with slow rTMS enhances verbal memory formation. PLoS Biol. 2021;19(9):e3001363. https://doi.org/10.1371/journal.pbio.3001363.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Traikapi A, Kalli I, Kyriakou A, Stylianou E, Symeou RT, Kardama A, et al. Episodic memory effects of gamma frequency precuneus transcranial magnetic stimulation in alzheimer’s disease: A randomized multiple baseline study. J Neuropsychol. 2023;17(2):279–301. https://doi.org/10.1111/jnp.12299.

    Article 
    PubMed 

    Google Scholar 

  • Hoy KE, Emonson MRL, Bailey NW, Rogers C, Coyle H, Stockman F, et al. Gamma connectivity predicts response to intermittent theta burst stimulation in alzheimer’s disease: a randomized controlled trial. Neurobiol Aging. 2023;132:13–23. https://doi.org/10.1016/j.neurobiolaging.2023.08.006.

    Article 
    PubMed 

    Google Scholar 

  • Canas PM, Simões AP, Rodrigues RJ, Cunha RA. Predominant loss of glutamatergic terminal markers in a β-amyloid peptide model of Alzheimer’s disease. Neuropharmacol 2014;76 Pt A:51–610.1016/j.neuropharm.2013.08.026

  • Koch G, Bonnì S, Pellicciari MC, Casula EP, Mancini M, Esposito R, et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal alzheimer’s disease. NeuroImage. 2018;169:302–11. https://doi.org/10.1016/j.neuroimage.2017.12.048.

    Article 
    PubMed 

    Google Scholar 

  • Cui X, Ren W, Zheng Z, Li J. Repetitive transcranial magnetic stimulation improved source memory and modulated Recollection-Based retrieval in healthy older adults. Front Psychol. 2020;11:1137. https://doi.org/10.3389/fpsyg.2020.01137.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao Q, Lv Y, Zhou Y, Hong Z, Guo Q. Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment. PLoS ONE. 2012;7(12):e51157. https://doi.org/10.1371/journal.pone.0051157.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma J, Zheng MX, Wu JJ, Xing XX, Xiang YT, Wei D, et al. Mapping the long-term delayed recall-based cortex-hippocampus network constrained by the structural and functional connectome: a case-control multimodal MRI study. Alzheimers Res Ther. 2023;15(1):61. https://doi.org/10.1186/s13195-023-01197-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin J, Maren S. Prefrontal-Hippocampal interactions in memory and emotion. Front Syst Neurosci. 2015;9:170. https://doi.org/10.3389/fnsys.2015.00170.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye Z, Shi L, Li A, Chen C, Xue G. Retrieval practice facilitates memory updating by enhancing and differentiating medial prefrontal cortex representations. eLife. 2020;9. https://doi.org/10.7554/eLife.57023.

  • Kluen LM, Dandolo LC, Jocham G, Schwabe L. Dorsolateral Prefrontal Cortex Enables Updating of Established Memories. Cerebral cortex (New York, NY: 1991). 2019;29(10):4154-68. https://doi.org/10.1093/cercor/bhy298

  • Higo T, Mars RB, Boorman ED, Buch ER, Rushworth MF. Distributed and causal influence of frontal operculum in task control. Proc Natl Acad Sci USA. 2011;108(10):4230–5. https://doi.org/10.1073/pnas.1013361108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manenti R, Brambilla M, Petesi M, Ferrari C, Cotelli M. Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Front Aging Neurosci. 2013;5:49. https://doi.org/10.3389/fnagi.2013.00049.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manenti R, Sandrini M, Gobbi E, Cobelli C, Brambilla M, Binetti G, et al. Strengthening of existing episodic memories through Non-invasive stimulation of prefrontal cortex in older adults with subjective memory complaints. Front Aging Neurosci. 2017;9:401. https://doi.org/10.3389/fnagi.2017.00401.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scarmeas N, Stern Y. fMRI evidence of compensatory mechanisms in older adults at genetic risk for alzheimer disease. Neurology. 2005;65(9):1514–5. https://doi.org/10.1212/wnl.65.9.1514-a. author reply – 5.

    Article 
    PubMed 

    Google Scholar 

  • Gigi A, Babai R, Penker A, Hendler T, Korczyn AD. Prefrontal compensatory mechanism May enable normal semantic memory performance in mild cognitive impairment (MCI). J Neuroimaging: Official J Am Soc Neuroimaging. 2010;20(2):163–8. https://doi.org/10.1111/j.1552-6569.2009.00386.x.

    Article 

    Google Scholar 

  • Erk S, Spottke A, Meisen A, Wagner M, Walter H, Jessen F. Evidence of neuronal compensation during episodic memory in subjective memory impairment. Arch Gen Psychiatry. 2011;68(8):845–52. https://doi.org/10.1001/archgenpsychiatry.2011.80.

    Article 
    PubMed 

    Google Scholar 

  • Haley MS, Maffei A. Versatility and flexibility of cortical circuits. The neuroscientist: a review journal bringing neurobiology. Neurol Psychiatry. 2018;24(5):456–70. https://doi.org/10.1177/1073858417733720.

    Article 

    Google Scholar 

  • Mansvelder HD, Verhoog MB, Goriounova NA. Synaptic plasticity in human cortical circuits: cellular mechanisms of learning and memory in the human brain? Current opinion in neurobiology. 2019;54:186–9310.1016/j.conb.2018.06.013

  • Stampanoni Bassi M, Iezzi E, Gilio L, Centonze D, Buttari F. Synaptic plasticity shapes brain connectivity: implications for network topology. Int J Mol Sci. 2019;20(24). https://doi.org/10.3390/ijms20246193.

  • Francesco DL, Koch G. Synaptic impairment: the new battlefield of alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc. 2021;17(2):314. https://doi.org/10.1002/alz.12189.

    Article 

    Google Scholar 

  • Buss SS, Press DZ, McDonald K, Kitchener E, O’Connor M, Donohoe K, et al. LTP-like plasticity is impaired in amyloid-positive amnestic MCI but independent of PET-amyloid burden. Neurobiol Aging. 2020;96:109–16. https://doi.org/10.1016/j.neurobiolaging.2020.08.021.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF, et al. Incidence and impact of subclinical epileptiform activity in alzheimer’s disease. Ann Neurol. 2016;80(6):858–70. https://doi.org/10.1002/ana.24794.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Styr B, Slutsky I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase alzheimer’s disease. Nat Neurosci. 2018;21(4):463–73. https://doi.org/10.1038/s41593-018-0080-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading