Wang K, Zhang SH, Wang DQ, Wu JM, Wang CY, Wei QW. Conservation genetics assessment and phylogenetic relationships of critically endangered Hucho bleekeri in China. J Appl Ichthyol. 2016;32(2):343–9.
Google Scholar
Hu M, Wang Y, Cao L, Xiong B. Threatened fishes of the world: Hucho bleekeri kimura, 1934 (Salmonidae). Environ Biol Fishes. 2008;82:385–6.
Google Scholar
Allendorf FW, Hard JJ. Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc Natl Acad Sci USA. 2009;106(Suppl 1):9987–94.
Google Scholar
Sadovy de Mitcheson Y, Craig MT, Bertoncini AA, Carpenter KE, Cheung WW, Choat JH, Cornish AS, Fennessy ST, Ferreira BP, Heemstra PCJF. Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish Fish. 2013;14(2):119–36.
Google Scholar
Sung W, Peiqi Y, Yiyu C, Commission ESS. China red data book of endangered animals: pisces. Beijing: Science; 1998.
Song Z. Hucho bleekeri. The IUCN Red List of Threatened Species. Version 2014.3. 2012.
Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11(10):697–709.
Google Scholar
Kohn MH, Murphy WJ, Ostrander EA, Wayne RK. Genomics and conservation genetics. Trends Ecol Evol. 2006;21(11):629–37.
Google Scholar
Xue DX, Xing TF, Liu JX. A high-quality chromosome-level genome of the endangered roughskin sculpin provides insights into its evolution and adaptation. Mol Ecol Resour. 2022;22(5):1892–905.
Google Scholar
Liu X, Zeng H, Wang C, Bo J, Gan X, Fang C, et al. Improved genome assembly of Chinese sucker (Myxocyprinus asiaticus) provides insights into the identification and characterization of pharyngeal teeth related maker genes in cyprinoidei. Water Biology and Security. 2022;1(3):100049.
Google Scholar
Zhu W, Wang Z, Li H, Li P, Ni L, Jiao L, et al. A chromosome-level genome of Brachymystax tsinlingensis provides resources and insights into salmonids evolution. G3 Genes|Genomes|Genetics. 2022;12(8):jkac162.
Google Scholar
Brandies P, Peel E, Hogg CJ, Belov K. The value of reference genomes in the conservation of threatened species. Genes (Basel). 2019;10(11):846.
Google Scholar
Waples RS, Naish KA, Primmer CR. Conservation and management of salmon in the age of genomics. Annu Rev Anim Biosci. 2020;8:117–43.
Google Scholar
Chen Y, Yang H, Gong Q, Chen Y, Tu Q, Li H. Isolation and characterization of 34 SNP markers in Hucho bleekeri. Conserv Genet Resour. 2020;12:157–60.
Google Scholar
Zhang Y, Luan P, Ren G, Hu G, Yin J. Estimating the inbreeding level and genetic relatedness in an isolated population of critically endangered Sichuan Taimen (Hucho bleekeri) using genome-wide SNP markers. Ecol Evol. 2020;10(3):1390–400.
Google Scholar
Chen Y, Yang H, Chen Y, Song M, Liu B, Song J, et al. Full-length transcriptome sequencing and identification of immune-related genes in the critically endangered Hucho bleekeri. Dev Comp Immunol. 2021;116:103934.
Google Scholar
Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae genome: features, evolutionary and phylogenetic characteristics. Genes. 2022;13(12):2221.
Google Scholar
Robertson FM, Gundappa MK, Grammes F, Hvidsten TR, Redmond AK, Lien S, Martin SAM, Holland PWH, Sandve SR, Macqueen DJ. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol. 2017;18(1):111.
Google Scholar
Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A, Kolesnikov A, Olson ND, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37(10):1155–62.
Google Scholar
Adams RH, Blackmon H, Reyes-Velasco J, Schield DR, Card DC, Andrew AL, Waynewood N, Castoe TA. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome. 2016;59(5):295–310.
Google Scholar
Horreo JL. Revisiting the mitogenomic phylogeny of salmoninae: new insights thanks to recent sequencing advances. PeerJ. 2017;5:e3828.
Google Scholar
Lecaudey LA, Schliewen UK, Osinov AG, Taylor EB, Bernatchez L, Weiss SJ. Inferring phylogenetic structure, hybridization and divergence times within salmoninae (Teleostei: Salmonidae) using RAD-sequencing. Mol Phylogenet Evol. 2018;124:82–99.
Google Scholar
Galland LM, Simmons JB, Jahner JP, Luzuriaga-Neira AR, Sloat MR, Chandra S, et al. Hierarchical genetic structure and implications for conservation of the world’s largest salmonid, Hucho taimen. Sci Rep. 2021;11(1):20508.
Google Scholar
Kaus A, Michalski S, Hänfling B, Karthe D, Borchardt D, Durka W. Fish conservation in the land of steppe and sky: evolutionarily significant units of threatened salmonid species in Mongolia mirror major river basins. Ecol Evol. 2019;9(6):3416–33.
Google Scholar
Kucinski M, Fopp-Bayat D. Phylogenetic analysis of Brachymystax and Hucho genera—summary on evolutionary status within the salmoninae subfamily. J Appl Ichthyol. 2022;38(4):403–11.
Google Scholar
Hilgers L, Liu S, Jensen A, Brown T, Cousins T, Schweiger R, et al. Avoidable false PSMC population size peaks occur across numerous studies. Curr Biol. 2025;35(4):927-e930923.
Google Scholar
Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A, et al. The Atlantic salmon genome provides insights into rediploidization. Nature. 2016;533(7602):200–5.
Google Scholar
Gundappa MK, To T-H, Grønvold L, Martin SAM, Lien S, Geist J, et al. Genome-wide reconstruction of rediploidization following autopolyploidization across one hundred million years of salmonid evolution. Mol Biol Evol. 2022;39(1):msab310.
Google Scholar
Smith SR, Normandeau E, Djambazian H, Nawarathna PM, Berube P, Muir AM, et al. A chromosome-anchored genome assembly for lake trout (Salvelinus namaycush). Mol Ecol Resour. 2022;22(2):679–94.
Google Scholar
Tørresen OK, Star B, Jentoft S, Reinar WB, Grove H, Miller JR, et al. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics. 2017;18(1):95.
Google Scholar
Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2011;13(1):36–46.
Google Scholar
Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet. 2020;21(10):597–614.
Google Scholar
Lang D, Zhang S, Ren P, Liang F, Sun Z, Meng G, et al. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. Gigascience. 2020;9(12):giaa123.
Google Scholar
Simon M, Hancock JM. Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins. Genome Biol. 2009;10(6):R59.
Google Scholar
Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet. 2010;44(1):445–77.
Google Scholar
Li M, Sun C, Xu N, Bian P, Tian X, Wang X, et al. De novo assembly of 20 chicken genomes reveals the undetectable phenomenon for thousands of core genes on microchromosomes and subtelomeric regions. Mol Biol Evol. 2022;39(4):msac066.
Google Scholar
Coggins LW, O’Prey M. DNA tertiary structures formed in vitro by misaligned hybridization of multiple tandem repeat sequences. Nucleic Acids Res. 1989;17(18):7417–26.
Google Scholar
Fan H, Chu JY. A brief review of short tandem repeat mutation. Genomics Proteomics Bioinf. 2007;5(1):7–14.
Google Scholar
Ahmed M, Liang P. Transposable elements are a significant contributor to tandem repeats in the human genome. Int J Genomics. 2012;2012(1):947089.
Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15(7):465–81.
Google Scholar
Selby CP, Lindsey-Boltz LA, Li W, Sancar A. Molecular mechanisms of Transcription-Coupled repair. Annu Rev Biochem. 2023;92:115–44.
Google Scholar
Rodriguez F, Arkhipova IR. Transposable elements and polyploid evolution in animals. Curr Opin Genet Dev. 2018;49:115–23.
Google Scholar
Marburger S, Alexandrou MA, Taggart JB, Creer S, Carvalho G, Oliveira C, et al. Whole genome duplication and transposable element proliferation drive genome expansion in corydoradinae catfishes. Proc Biol Sci. 2018;285(1872):20172732.
Google Scholar
Campbell MA, Buser TJ, Alfaro ME, López JA. Addressing incomplete lineage sorting and paralogy in the inference of uncertain salmonid phylogenetic relationships. PeerJ. 2020;8:e9389.
Google Scholar
Crête-Lafrenière A, Weir LK, Bernatchez L. Framing the Salmonidae family phylogenetic portrait: a more complete picture from increased taxon sampling. PLoS One. 2012;7(10):e46662.
Google Scholar
McKay SJ, Trautner J, Smith MJ, Koop BF, Devlin RH. Evolution of duplicated growth hormone genes in autotetraploid salmonid fishes. Genome. 2004;47(4):714–23.
Google Scholar
Wang Y, Guo R, Li H, Zhang X, Du J, Song Z. The complete mitochondrial genome of the Sichuan Taimen (Hucho bleekeri): repetitive sequences in the control region and phylogenetic implications for Salmonidae. Mar Genomics. 2011;4(3):221–8.
Google Scholar
Wang Y, Xiong F, Song Z. Molecular phylogeny and adaptive mitochondrial DNA evolution of salmonids (Pisces: Salmonidae). Front Genet. 2022;13:903240.
Google Scholar
Macqueen DJ, Johnston IA. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc Biol Sci. 2014;281(1778):20132881.
Google Scholar
Campbell MA, López JA, Sado T, Miya M. Pike and salmon as sister taxa: detailed intraclade resolution and divergence time estimation of Esociformes + Salmoniformes based on whole mitochondrial genome sequences. Gene. 2013;530(1):57–65.
Google Scholar
Shedko SV, Miroshnichenko IL, Nemkova GA. Phylogeny of salmonids (Salmoniformes, Salmonidae) and molecular dating: analysis of mtDNA data. Genetika. 2013;49(6):718–34.
Google Scholar
Crespi BJ, Fulton MJ. Molecular systematics of salmonidae: combined nuclear data yields a robust phylogeny. Mol Phylogenet Evol. 2004;31(2):658–79.
Google Scholar
Böhme MJP, Palaeoclimatology. Palaeoecology: the miocene Climatic optimum: evidence from ectothermic vertebrates of central Europe. Palaeogeogr Palaeoclimatol Palaeoecol. 2003;195(3–4):389–401.
Google Scholar
Sun J, Zhang Z. Palynological evidence for the mid-Miocene climatic optimum recorded in cenozoic sediments of the Tian Shan range, Northwestern China. Glob Planet Change. 2008;64(1):53–68.
Google Scholar
Shen Z, Tang W, Li K. The analysis of population dynamics of Hucho bleekeri in Markehe river, Qinghai Province. Reserv Fisheries. 2006;26:71–3.
Google Scholar
Stefanova P, Taseva M, Georgieva T, Gotcheva V, Angelov A. A modified CTAB method for DNA extraction from soybean and meat products. Biotechnol Biotechnol Equip. 2013;27(3):3803–10.
Google Scholar
Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res. 2018;46(5):2159–68.
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884-90.
Google Scholar
Liu B, Shi Y, Yuan J, Hu X, Zhang H, Li N, Li Z, Chen Y, Mu D, Fan W. Estimation of genomic characteristics by analyzing k-mer frequency in de Novo genome projects. arXiv. 2013;arXiv:13082012.
Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and smudgeplot for reference-free profiling of polyploid genomes. Nat Commun. 2020;11(1):1432.
Google Scholar
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18(2):170–5.
Google Scholar
Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3(1):95–8.
Google Scholar
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356(6333):92–5.
Google Scholar
Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 2016;3(1):99–101.
Google Scholar
Roach MJ, Schmidt SA, Borneman AR. Purge haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinf. 2018;19(1):460.
Google Scholar
Xu M, Guo L, Gu S, Wang O, Zhang R, Peters BA, et al. TGS-gapcloser: a fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience. 2020;9(9):giaa094.
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
Google Scholar
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. Repeatmodeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020;117(17):9451–7.
Google Scholar
Xu Z, Wang H. Ltr_finder: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35(2):W265-8.
Google Scholar
Ou S, Jiang N. Ltr_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2018;176(2):1410–22.
Google Scholar
Ye J, McGinnis S, Madden TL. BLAST: improvements for better sequence analysis. Nucleic Acids Res. 2006;34(Web Server issue):W6-9.
Google Scholar
Tarailo-Graovac M, Chen N. Using repeatmasker to identify repetitive elements in genomic sequences. Curr Protoc. 2009;4:1–4.
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80.
Google Scholar
Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics. 2016;32(5):767–9.
Google Scholar
Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. Whole-genome annotation with BRAKER. Methods Mol Biol. 2019;1962:65–95.
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Google Scholar
Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016;48(4):427–37.
Google Scholar
Gao G, Magadan S, Waldbieser GC, Youngblood RC, Wheeler PA, Scheffler BE, et al. A long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals chromosomal rearrangements in rainbow trout. G3 Genes|Genomes|Genetics. 2021;11(4):jkab052.
Google Scholar
Gabriel L, Hoff KJ, Brůna T, Borodovsky M, Stanke M. TSEBRA: transcript selector for BRAKER. BMC Bioinf. 2021;22(1):566.
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.
Google Scholar
Christensen KA, Rondeau EB, Minkley DR, Sakhrani D, Biagi CA, Flores AM, et al. The sockeye salmon genome, transcriptome, and analyses identifying population defining regions of the genome. PLoS One. 2020;15(10):e0240935.
Google Scholar
Hansen T, Fjelldal PG, Lien S, Smith M, Corton C, Oliver K, et al. The genome sequence of the brown trout, Salmo trutta Linnaeus 1758. Wellcome Open Res. 2021;6:108.
Google Scholar
Emms DM, Kelly S. Orthofinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:1–14.
Google Scholar
Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Google Scholar
Mendes FK, Vanderpool D, Fulton B, Hahn MW. Cafe 5 models variation in evolutionary rates among gene families. Bioinformatics. 2020;36(22–23):5516–8.
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
Google Scholar
Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, et al. TimeTree 5: an expanded resource for species divergence times. Mol Biol Evol. 2022. https://doi.org/10.1093/molbev/msac174.
Google Scholar
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34(suppl2):W609-12.
Google Scholar
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-tree: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.
Google Scholar
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15(1):356.
Google Scholar
Shumate A, Salzberg SL. Liftoff: accurate mapping of gene annotations. Bioinformatics. 2021;37(12):1639–43.
Google Scholar
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, et al. BEAST 2.5: an advanced software platform for bayesian evolutionary analysis. PLoS Comput Biol. 2019;15(4):e1006650.
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772–772.
Google Scholar
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst Biol. 2018;67(5):901–4.
Google Scholar
Li H, Durbin R: Inference of human population history from individual whole-genome sequences. Nature 2011, 475(7357):493-496.
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM et al: Twelve years of SAMtools and BCFtools. GigaScience 2021, 10(2):giab008.