Chromosome-level genome assembly for Sichuan taimen (Hucho bleekeri) reveals the extraordinary tandem repeat proportions and its persistent population shrinkage | BMC Genomics

  • Wang K, Zhang SH, Wang DQ, Wu JM, Wang CY, Wei QW. Conservation genetics assessment and phylogenetic relationships of critically endangered Hucho bleekeri in China. J Appl Ichthyol. 2016;32(2):343–9.

    Article 

    Google Scholar 

  • Hu M, Wang Y, Cao L, Xiong B. Threatened fishes of the world: Hucho bleekeri kimura, 1934 (Salmonidae). Environ Biol Fishes. 2008;82:385–6.

    Article 

    Google Scholar 

  • Allendorf FW, Hard JJ. Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc Natl Acad Sci USA. 2009;106(Suppl 1):9987–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sadovy de Mitcheson Y, Craig MT, Bertoncini AA, Carpenter KE, Cheung WW, Choat JH, Cornish AS, Fennessy ST, Ferreira BP, Heemstra PCJF. Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish Fish. 2013;14(2):119–36.

    Article 

    Google Scholar 

  • Sung W, Peiqi Y, Yiyu C, Commission ESS. China red data book of endangered animals: pisces. Beijing: Science; 1998.

    Google Scholar 

  • Song Z. Hucho bleekeri. The IUCN Red List of Threatened Species. Version 2014.3. 2012.

  • Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11(10):697–709.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kohn MH, Murphy WJ, Ostrander EA, Wayne RK. Genomics and conservation genetics. Trends Ecol Evol. 2006;21(11):629–37.

    Article 
    PubMed 

    Google Scholar 

  • Xue DX, Xing TF, Liu JX. A high-quality chromosome-level genome of the endangered roughskin sculpin provides insights into its evolution and adaptation. Mol Ecol Resour. 2022;22(5):1892–905.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu X, Zeng H, Wang C, Bo J, Gan X, Fang C, et al. Improved genome assembly of Chinese sucker (Myxocyprinus asiaticus) provides insights into the identification and characterization of pharyngeal teeth related maker genes in cyprinoidei. Water Biology and Security. 2022;1(3):100049.

    Article 

    Google Scholar 

  • Zhu W, Wang Z, Li H, Li P, Ni L, Jiao L, et al. A chromosome-level genome of Brachymystax tsinlingensis provides resources and insights into salmonids evolution. G3 Genes|Genomes|Genetics. 2022;12(8):jkac162.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandies P, Peel E, Hogg CJ, Belov K. The value of reference genomes in the conservation of threatened species. Genes (Basel). 2019;10(11):846.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Waples RS, Naish KA, Primmer CR. Conservation and management of salmon in the age of genomics. Annu Rev Anim Biosci. 2020;8:117–43.

    Article 
    PubMed 

    Google Scholar 

  • Chen Y, Yang H, Gong Q, Chen Y, Tu Q, Li H. Isolation and characterization of 34 SNP markers in Hucho bleekeri. Conserv Genet Resour. 2020;12:157–60.

    Article 

    Google Scholar 

  • Zhang Y, Luan P, Ren G, Hu G, Yin J. Estimating the inbreeding level and genetic relatedness in an isolated population of critically endangered Sichuan Taimen (Hucho bleekeri) using genome-wide SNP markers. Ecol Evol. 2020;10(3):1390–400.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen Y, Yang H, Chen Y, Song M, Liu B, Song J, et al. Full-length transcriptome sequencing and identification of immune-related genes in the critically endangered Hucho bleekeri. Dev Comp Immunol. 2021;116:103934.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae genome: features, evolutionary and phylogenetic characteristics. Genes. 2022;13(12):2221.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robertson FM, Gundappa MK, Grammes F, Hvidsten TR, Redmond AK, Lien S, Martin SAM, Holland PWH, Sandve SR, Macqueen DJ. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol. 2017;18(1):111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A, Kolesnikov A, Olson ND, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37(10):1155–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams RH, Blackmon H, Reyes-Velasco J, Schield DR, Card DC, Andrew AL, Waynewood N, Castoe TA. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome. 2016;59(5):295–310.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horreo JL. Revisiting the mitogenomic phylogeny of salmoninae: new insights thanks to recent sequencing advances. PeerJ. 2017;5:e3828.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lecaudey LA, Schliewen UK, Osinov AG, Taylor EB, Bernatchez L, Weiss SJ. Inferring phylogenetic structure, hybridization and divergence times within salmoninae (Teleostei: Salmonidae) using RAD-sequencing. Mol Phylogenet Evol. 2018;124:82–99.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Galland LM, Simmons JB, Jahner JP, Luzuriaga-Neira AR, Sloat MR, Chandra S, et al. Hierarchical genetic structure and implications for conservation of the world’s largest salmonid, Hucho taimen. Sci Rep. 2021;11(1):20508.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaus A, Michalski S, Hänfling B, Karthe D, Borchardt D, Durka W. Fish conservation in the land of steppe and sky: evolutionarily significant units of threatened salmonid species in Mongolia mirror major river basins. Ecol Evol. 2019;9(6):3416–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kucinski M, Fopp-Bayat D. Phylogenetic analysis of Brachymystax and Hucho genera—summary on evolutionary status within the salmoninae subfamily. J Appl Ichthyol. 2022;38(4):403–11.

    Article 
    CAS 

    Google Scholar 

  • Hilgers L, Liu S, Jensen A, Brown T, Cousins T, Schweiger R, et al. Avoidable false PSMC population size peaks occur across numerous studies. Curr Biol. 2025;35(4):927-e930923.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A, et al. The Atlantic salmon genome provides insights into rediploidization. Nature. 2016;533(7602):200–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gundappa MK, To T-H, Grønvold L, Martin SAM, Lien S, Geist J, et al. Genome-wide reconstruction of rediploidization following autopolyploidization across one hundred million years of salmonid evolution. Mol Biol Evol. 2022;39(1):msab310.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith SR, Normandeau E, Djambazian H, Nawarathna PM, Berube P, Muir AM, et al. A chromosome-anchored genome assembly for lake trout (Salvelinus namaycush). Mol Ecol Resour. 2022;22(2):679–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tørresen OK, Star B, Jentoft S, Reinar WB, Grove H, Miller JR, et al. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics. 2017;18(1):95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2011;13(1):36–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet. 2020;21(10):597–614.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lang D, Zhang S, Ren P, Liang F, Sun Z, Meng G, et al. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. Gigascience. 2020;9(12):giaa123.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon M, Hancock JM. Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins. Genome Biol. 2009;10(6):R59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet. 2010;44(1):445–77.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li M, Sun C, Xu N, Bian P, Tian X, Wang X, et al. De novo assembly of 20 chicken genomes reveals the undetectable phenomenon for thousands of core genes on microchromosomes and subtelomeric regions. Mol Biol Evol. 2022;39(4):msac066.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coggins LW, O’Prey M. DNA tertiary structures formed in vitro by misaligned hybridization of multiple tandem repeat sequences. Nucleic Acids Res. 1989;17(18):7417–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan H, Chu JY. A brief review of short tandem repeat mutation. Genomics Proteomics Bioinf. 2007;5(1):7–14.

    Article 
    CAS 

    Google Scholar 

  • Ahmed M, Liang P. Transposable elements are a significant contributor to tandem repeats in the human genome. Int J Genomics. 2012;2012(1):947089.

    Google Scholar 

  • Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15(7):465–81.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Selby CP, Lindsey-Boltz LA, Li W, Sancar A. Molecular mechanisms of Transcription-Coupled repair. Annu Rev Biochem. 2023;92:115–44.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodriguez F, Arkhipova IR. Transposable elements and polyploid evolution in animals. Curr Opin Genet Dev. 2018;49:115–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marburger S, Alexandrou MA, Taggart JB, Creer S, Carvalho G, Oliveira C, et al. Whole genome duplication and transposable element proliferation drive genome expansion in corydoradinae catfishes. Proc Biol Sci. 2018;285(1872):20172732.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell MA, Buser TJ, Alfaro ME, López JA. Addressing incomplete lineage sorting and paralogy in the inference of uncertain salmonid phylogenetic relationships. PeerJ. 2020;8:e9389.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crête-Lafrenière A, Weir LK, Bernatchez L. Framing the Salmonidae family phylogenetic portrait: a more complete picture from increased taxon sampling. PLoS One. 2012;7(10):e46662.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKay SJ, Trautner J, Smith MJ, Koop BF, Devlin RH. Evolution of duplicated growth hormone genes in autotetraploid salmonid fishes. Genome. 2004;47(4):714–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang Y, Guo R, Li H, Zhang X, Du J, Song Z. The complete mitochondrial genome of the Sichuan Taimen (Hucho bleekeri): repetitive sequences in the control region and phylogenetic implications for Salmonidae. Mar Genomics. 2011;4(3):221–8.

    Article 
    PubMed 

    Google Scholar 

  • Wang Y, Xiong F, Song Z. Molecular phylogeny and adaptive mitochondrial DNA evolution of salmonids (Pisces: Salmonidae). Front Genet. 2022;13:903240.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macqueen DJ, Johnston IA. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc Biol Sci. 2014;281(1778):20132881.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell MA, López JA, Sado T, Miya M. Pike and salmon as sister taxa: detailed intraclade resolution and divergence time estimation of Esociformes + Salmoniformes based on whole mitochondrial genome sequences. Gene. 2013;530(1):57–65.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shedko SV, Miroshnichenko IL, Nemkova GA. Phylogeny of salmonids (Salmoniformes, Salmonidae) and molecular dating: analysis of mtDNA data. Genetika. 2013;49(6):718–34.

    CAS 
    PubMed 

    Google Scholar 

  • Crespi BJ, Fulton MJ. Molecular systematics of salmonidae: combined nuclear data yields a robust phylogeny. Mol Phylogenet Evol. 2004;31(2):658–79.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Böhme MJP, Palaeoclimatology. Palaeoecology: the miocene Climatic optimum: evidence from ectothermic vertebrates of central Europe. Palaeogeogr Palaeoclimatol Palaeoecol. 2003;195(3–4):389–401.

    Article 

    Google Scholar 

  • Sun J, Zhang Z. Palynological evidence for the mid-Miocene climatic optimum recorded in cenozoic sediments of the Tian Shan range, Northwestern China. Glob Planet Change. 2008;64(1):53–68.

    Article 

    Google Scholar 

  • Shen Z, Tang W, Li K. The analysis of population dynamics of Hucho bleekeri in Markehe river, Qinghai Province. Reserv Fisheries. 2006;26:71–3.

    CAS 

    Google Scholar 

  • Stefanova P, Taseva M, Georgieva T, Gotcheva V, Angelov A. A modified CTAB method for DNA extraction from soybean and meat products. Biotechnol Biotechnol Equip. 2013;27(3):3803–10.

    Article 
    CAS 

    Google Scholar 

  • Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res. 2018;46(5):2159–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884-90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu B, Shi Y, Yuan J, Hu X, Zhang H, Li N, Li Z, Chen Y, Mu D, Fan W. Estimation of genomic characteristics by analyzing k-mer frequency in de Novo genome projects. arXiv. 2013;arXiv:13082012.

  • Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and smudgeplot for reference-free profiling of polyploid genomes. Nat Commun. 2020;11(1):1432.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18(2):170–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3(1):95–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356(6333):92–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 2016;3(1):99–101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roach MJ, Schmidt SA, Borneman AR. Purge haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinf. 2018;19(1):460.

    Article 
    CAS 

    Google Scholar 

  • Xu M, Guo L, Gu S, Wang O, Zhang R, Peters BA, et al. TGS-gapcloser: a fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience. 2020;9(9):giaa094.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.

    Article 
    PubMed 

    Google Scholar 

  • Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. Repeatmodeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020;117(17):9451–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu Z, Wang H. Ltr_finder: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35(2):W265-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ou S, Jiang N. Ltr_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2018;176(2):1410–22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye J, McGinnis S, Madden TL. BLAST: improvements for better sequence analysis. Nucleic Acids Res. 2006;34(Web Server issue):W6-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarailo-Graovac M, Chen N. Using repeatmasker to identify repetitive elements in genomic sequences. Curr Protoc. 2009;4:1–4.

    Google Scholar 

  • Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics. 2016;32(5):767–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. Whole-genome annotation with BRAKER. Methods Mol Biol. 2019;1962:65–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016;48(4):427–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao G, Magadan S, Waldbieser GC, Youngblood RC, Wheeler PA, Scheffler BE, et al. A long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals chromosomal rearrangements in rainbow trout. G3 Genes|Genomes|Genetics. 2021;11(4):jkab052.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gabriel L, Hoff KJ, Brůna T, Borodovsky M, Stanke M. TSEBRA: transcript selector for BRAKER. BMC Bioinf. 2021;22(1):566.

    Article 
    CAS 

    Google Scholar 

  • Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Christensen KA, Rondeau EB, Minkley DR, Sakhrani D, Biagi CA, Flores AM, et al. The sockeye salmon genome, transcriptome, and analyses identifying population defining regions of the genome. PLoS One. 2020;15(10):e0240935.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen T, Fjelldal PG, Lien S, Smith M, Corton C, Oliver K, et al. The genome sequence of the brown trout, Salmo trutta Linnaeus 1758. Wellcome Open Res. 2021;6:108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emms DM, Kelly S. Orthofinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:1–14.

    Article 

    Google Scholar 

  • Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mendes FK, Vanderpool D, Fulton B, Hahn MW. Cafe 5 models variation in evolutionary rates among gene families. Bioinformatics. 2020;36(22–23):5516–8.

    CAS 

    Google Scholar 

  • Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, et al. TimeTree 5: an expanded resource for species divergence times. Mol Biol Evol. 2022. https://doi.org/10.1093/molbev/msac174.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34(suppl2):W609-12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-tree: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15(1):356.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shumate A, Salzberg SL. Liftoff: accurate mapping of gene annotations. Bioinformatics. 2021;37(12):1639–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, et al. BEAST 2.5: an advanced software platform for bayesian evolutionary analysis. PLoS Comput Biol. 2019;15(4):e1006650.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772–772.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst Biol. 2018;67(5):901–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li H, Durbin R: Inference of human population history from individual whole-genome sequences. Nature 2011, 475(7357):493-496.

  • Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM et al: Twelve years of SAMtools and BCFtools. GigaScience 2021, 10(2):giab008.

  • Continue Reading