Bryan PG. Growth rate, toxicity, and distribution of the encrusting sponge Terpios sp.(Hadromerida: Suberitidae) in Guam, Mariana Islands. Micronesica. 1973;9(2):237–42.
Plucer-Rosario G. The effect of substratum on the growth of terpios, an encrusting sponge which kills corals. Coral Reefs. 1987;5(4):197–200.
Google Scholar
Rützler K, Muzik K. Terpios hoshinota, a new cyanobacteriosponge threatening Pacific reefs. Recent Adv Syst Ecol Sponges Scientia Mar 1993.
Liao M-H, Tang S-L, Hsu C-M, Wen K-C, Wu H, Chen W-M, Wang J-T, Meng P-J, Twan W-H, Lu C-K. The black disease of Reef-Building corals at green island, Taiwan-Outbreak of a cyanobacteriosponge. Terpios Hoshinota (Suberitidae; Hadromerida). Volume 46. ZOOLOGICAL STUDIES-TAIPEI-; 2007. p. 520. 4.
Fujii T, Keshavmurthy S, Zhou W, Hirose E, Chen CA, Reimer JD. Coral-killing cyanobacteriosponge (Terpios hoshinota) on the great barrier reef. Coral Reefs. 2011;30(2):483–483.
Google Scholar
Shi Q, Liu GH, Yan HQ, Zhang HL. Black disease (Terpios hoshinota): a probable cause for the rapid coral mortality at the Northern reef of Yongxing Island in the South China sea. Ambio. 2012;41(5):446–55.
Google Scholar
de Voogd NJ, Cleary DFR, Dekker F. The coral-killing sponge Terpios Hoshinota invades Indonesia. Coral Reefs. 2013;32(3):755–755.
Google Scholar
Hoeksema BW, Waheed Z, de Voogd NJ. Partial mortality in corals overgrown by the sponge < i > terpios hoshinota at Tioman island, Peninsular Malaysia (South China Sea). Bull Mar Sci. 2014;90(4):989–90.
Google Scholar
Montano S, Chou W-H, Chen CA, Galli P, Reimer JD. First record of the coral-killing sponge Terpios Hoshinota in the Maldives and Indian ocean. Bull Mar Sci. 2014;91(1):97–8.
Google Scholar
Madduppa H, Schupp PJ, Faisal MR, Sastria MY, Thoms C. Persistent outbreaks of the black disease sponge Terpios Hoshinota in Indonesian coral reefs. Marine Biodivers. 2015;47(1):149–51.
Google Scholar
Thinesh T, Jose PA, Hassan S, Selvan KM, Selvin J. Intrusion of coral-killing sponge (Terpios hoshinota) on the reef of Palk Bay. Curr Sci. 2015;109(6):1030–2.
Thinesh T, Meenatchi R, Pasiyappazham R, Jose PA, Selvan M, Kiran GS, Selvin J. Short-term in situ shading effectively mitigates linear progression of coral-killing sponge Terpios Hoshinota. PLoS ONE. 2017;12(8):e0182365.
Google Scholar
Yomogida M, Mizuyama M, Kubomura T, Davis Reimer J. Disappearance and return of an outbreak of the Coral-killing cyanobacteriosponge Terpios Hoshinota in Southern Japan. Zool Stud. 2017;56:e7.
Google Scholar
Utami RT, Zamani NP, Madduppa HH. Molecular identification, abundance and distribution of the coral-killing sponge Terpios Hoshinota in Bengkulu and Seribu islands, Indonesia. Biodiversitas J Biol Divers. 2018;19(6):2238–46.
Google Scholar
Yang S-Y, Chen H-J, Ho M-J, Chen Y-J, Huang Y-Y, Chow WS, Tang S-L, Jeng M-S, Chen CA. Outbreak of coral-killing cyanobacteriasponge, Terpios hoshinota, in Taiping Island (Itu Aba), Spratlys, South China Sea. Bull Mar Sci. 2018;94(4):1543–4.
Google Scholar
Thinesh T, Meenatchi R, Lipton AN, Anandham R, Jose PA, Tang SL, Seghal Kiran G, Selvin J. Metagenomic sequencing reveals altered bacterial abundance during coral-sponge interaction: insights into the invasive process of coral-killing sponge Terpios Hoshinota. Microbiol Res. 2020;240:126553.
Google Scholar
Hirose E, Murakami A. Microscopic anatomy and pigment characterization of Coral-Encrusting black sponge with cyanobacterial symbiont, terpios hoshinota. Zoolog Sci. 2011;28(3):199–205.
Google Scholar
Tang S-L, Hong M-J, Liao M-H, Jane W-N, Chiang P-W, Chen C-B, Chen CA. Bacteria associated with an encrusting sponge (Terpios hoshinota) and the corals partially covered by the sponge. Environ Microbiol. 2011;13(5):1179–91.
Google Scholar
Chen Y-H, Chen H-J, Yang C-Y, Shiu J-H, Hoh DZ, Chiang P-W, Chow WS, Chen CA, Shih T-H, Lin S-H, et al. Prevalence, complete genome, and metabolic potentials of a phylogenetically novel cyanobacterial symbiont in the coral-killing sponge, Terpios Hoshinota. Environ Microbiol. 2022;24(3):1308–25.
Google Scholar
Syue S-T, Hsu C-H, Soong K. Testing of how and why the Terpios Hoshinota sponge kills stony corals. Sci Rep. 2021;11(1):7661.
Google Scholar
Wang J-T, Hsu C-M, Kuo C-Y, Meng P-J, Kao S-J, Chen CA. Physiological outperformance at the morphologically-transformed edge of the cyanobacteriosponge Terpios Hoshinota (Suberitidae: Hadromerida) when confronting opponent corals. PLoS ONE. 2015;10(6):e0131509.
Google Scholar
Elliott J, Patterson M, Summers N, Miternique C, Montocchio E, Vitry E. How does the proliferation of the coral-killing sponge Terpios Hoshinota affect benthic community structure on coral reefs? Coral Reefs. 2016;35(3):1083–95.
Google Scholar
Elliott J, Patterson M, Vitry E, Summers N, Miternique C. Morphological plasticity allows coral to actively overgrow the aggressive sponge Terpios Hoshinota (Mauritius, Southwestern Indian Ocean). Marine Biodivers. 2016;46(2):489–93.
Google Scholar
Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD. Climate warming and disease risks for terrestrial and marine biota. Science. 2002;296(5576):2158–62.
Google Scholar
Gattuso J. Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change. 1998;18(1–2):37–46.
Google Scholar
Webster NS, Uthicke S, Botté ES, Flores F, Negri AP. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob Change Biol. 2013;19(1):303–15.
Google Scholar
Stabili L, Cardone F, Alifano P, Tredici SM, Piraino S, Corriero G, Gaino E. Epidemic mortality of the sponge Ircinia variabilis (Schmidt, 1862) associated to proliferation of a vibrio bacterium. Microb Ecol. 2012;64(3):802–13.
Google Scholar
Pita L, Erwin PM, Turon X, Lopez-Legentil S. Till death do Us part: stable sponge-bacteria associations under thermal and food shortage stresses. PLoS ONE. 2013;8(11):e80307.
Google Scholar
Webster NS, Thomas T. The sponge hologenome. mBio. 2016;7(2):e00135–00116.
Google Scholar
Aini SN, Yamashiro H. Densities of cyanobacterial cells, spicules, and particles in the coral-killing sponge < i > terpios hoshinota in Sesoko island, okinawa, Japan. Plankton Benthos Res. 2022;17(3):263–70.
Google Scholar
Aini SN, Tang S-L, Yamashiro H. Monthly progression rates of the coral-killing sponge Terpios Hoshinota in Sesoko island, okinawa, Japan. Coral Reefs. 2021;40(3):973–81.
Google Scholar
Dennis A, Senthilnathan L. Monitoring of coral-killing sponge (Terpios hoshinota) caused rapid coral tissue loss assessment through environmental parameters in the Palk Bay. Reg Stud Mar Sci 2023;66.
Muller WE, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schroder HC. Formation of siliceous spicules in the marine demosponge suberites domuncula. Cell Tissue Res. 2005;321(2):285–97.
Google Scholar
Kozhemyako VB, Veremeichik GN, Shkryl YN, Kovalchuk SN, Krasokhin VB, Rasskazov VA, Zhuravlev YN, Bulgakov VP, Kulchin YN. Silicatein genes in spicule-forming and nonspicule-forming Pacific demosponges. Mar Biotechnol (NY). 2010;12(4):403–9.
Google Scholar
Wang X, Schlossmacher U, Wiens M, Batel R, Schroder HC, Muller WE. Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules. FEBS J. 2012;279(10):1721–36.
Google Scholar
Aguilar-Camacho JM, McCormack GP. Silicatein expression in Haliclona indistincta (Phylum porifera, order Haplosclerida) at different developmental stages. Dev Genes Evol. 2019;229(1):35–41.
Google Scholar
Petersen CP, Reddien PW. Wnt signaling and the Polarity of the primary body axis. Cell. 2009;139(6):1056–68.
Google Scholar
Zhang X-G, Pratt BR. A varied middle ordovician sponge spicule assemblage from Western Newfoundland. J Paleontol. 2000;74(3):386–93.
Google Scholar
Larroux C, Fahey B, Degnan SM, Adamski M, Rokhsar DS, Degnan Bernard M. The NK homeobox gene cluster predates the origin of hox genes. Curr Biol. 2007;17(8):706–10.
Google Scholar
Dishaw LJ, Giacomelli S, Melillo D, Zucchetti I, Haire RN, Natale L, Russo NA, De Santis R, Litman GW, Pinto MR. A role for variable region-containing chitin-binding proteins (VCBPs) in host gut–bacteria interactions. Proc Natl Acad Sci. 2011;108(40):16747–52.
Google Scholar
Bosch TCG. Cnidarian-Microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol. 2013;67(67, 2013):499–518.
Google Scholar
Brennan JJ, Messerschmidt JL, Williams LM, Matthews BJ, Reynoso M, Gilmore TD. Gilmore TD: Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development. Proceedings of the National Academy of Sciences. 2017;114(47):E10122–31.
Google Scholar
Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, Pevzner PA. Assembly of long error-prone reads using de Bruijn graphs. Proc Natl Acad Sci. 2016;113(52):E8396–405.
Google Scholar
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–6.
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9(11):e112963.
Google Scholar
Vasimuddin M, Misra S, Li H, Aluru S. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS): 20–24 May 2019 2019; 2019: 314–324.
Mikheenko A, Saveliev V, Hirsch P, Gurevich A. WebQUAST: online evaluation of genome assemblies. Nucleic Acids Res. 2023;51(W1):W601–6.
Google Scholar
West PT, Probst AJ, Grigoriev IV, Thomas BC, Banfield JF. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 2018;28(4):569–80.
Google Scholar
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54.
Google Scholar
Manni M, Berkeley MR, Seppey M, Zdobnov EM. BUSCO: assessing genomic data quality and beyond. Curr Protocols. 2021;1(12):e323.
Google Scholar
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40.
Google Scholar
Voigt O, Adamski M, Sluzek K, Adamska M. Calcareous sponge genomes reveal complex evolution of alpha-carbonic anhydrases and two key biomineralization enzymes. BMC Evol Biol. 2014;14:230.
Google Scholar
Nichols SA, Roberts BW, Richter DJ, Fairclough SR, King N. Origin of metazoan Cadherin diversity and the antiquity of the classical Cadherin/beta-catenin complex. Proc Natl Acad Sci U S A. 2012;109(32):13046–51.
Google Scholar
Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, Wang X, Haywood A, Lafi FF, Kupresanin M, et al. Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics. 2016;17:158.
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16(1):157.
Google Scholar
Emms DM, Kelly S. STRIDE: species tree root inference from gene duplication events. Mol Biol Evol. 2017;34(12):3267–78.
Google Scholar
Emms D, Kelly S. STAG: species tree inference from all genes. BioRxiv 2018:267914.
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238.
Google Scholar
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–7.
Google Scholar
Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, Stecher G, Hedges SB. TimeTree 5: an expanded resource for species divergence times. Mol Biol Evol. 2022;39(8):msac174. https://doi.org/10.1093/molbev/msac174.
Tao Q, Tamura K, Mello B, Kumar S. Reliable confidence intervals for RelTime estimates of evolutionary divergence times. Mol Biol Evol. 2020;37(1):280–90.
Google Scholar
Kanehisa M, Sato Y, Morishima K. BlastKOALA and ghostkoala: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428(4):726–31.
Google Scholar
Suzuki A, Iguchi A, Sakai K, Hayashi M, Nojiri Y. Succession of Ocean Acidification and its Effects on Reef-Building Corals. In: Coral Reefs of Eastern Asia under Anthropogenic Impacts. Edited by Takeuchi I, Yamashiro H. Cham: Springer International Publishing; 2023: 97–112.
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq—a python framework to work with high-throughput sequencing data. Bioinformatics. 2014;31(2):166–9.
Google Scholar
Love MI, Huber W, Anders S. Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Google Scholar
Alexa ARJ. topGO: Enrichment Analysis for Gene Ontology. In.; 2025.
Muller WE. Review: how was metazoan threshold crossed? The hypothetical Urmetazoa. Comp Biochem Physiol Mol Integr Physiol. 2001;129(2–3):433–60.
Google Scholar
Zumberge JA, Love GD, Cardenas P, Sperling EA, Gunasekera S, Rohrssen M, Grosjean E, Grotzinger JP, Summons RE. Demosponge steroid biomarker 26-methylstigmastane provides evidence for neoproterozoic animals. Nat Ecol Evol. 2018;2(11):1709–14.
Google Scholar
Carrera MG, Rigby JK. Biogeography of ordovician sponges. J Paleontol. 1999;73(1):26–37.
Google Scholar
Hirose Y, Tang SL, Yamashiro H. Arrangement and development of spicules in the Coral-killing sponge, Terpios Hoshinota. Zool Stud. 2024;63:e26.
Google Scholar
Schroder HC, Perovic-Ottstadt S, Grebenjuk VA, Engel S, Muller IM, Muller WE. Biosilica formation in spicules of the sponge suberites domuncula: synchronous expression of a gene cluster. Genomics. 2005;85(6):666–78.
Google Scholar
Schroder HC, Natalio F, Shukoor I, Tremel W, Schlossmacher U, Wang X, Muller WE. Apposition of silica lamellae during growth of spicules in the demosponge suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. J Struct Biol. 2007;159(3):325–34.
Google Scholar
Muller WE, Boreiko A, Schlossmacher U, Wang X, Eckert C, Kropf K, Li J, Schroder HC. Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis Chuni. J Exp Biol. 2008;211(Pt 3):300–9.
Google Scholar
Wang X, Wiens M, Schroder HC, Schlossmacher U, Pisignano D, Jochum KP, Muller WE. Evagination of cells controls bio-silica formation and maturation during spicule formation in sponges. PLoS ONE. 2011;6(6):e20523.
Google Scholar
Muller WE, Belikov SI, Tremel W, Perry CC, Gieskes WW, Boreiko A, Schroder HC. Siliceous spicules in marine demosponges (example suberites domuncula). Micron. 2006;37(2):107–20.
Google Scholar
Jones G. A field guide to the marine animals of the cape Peninsula. Southern Underwater Research Group; 2008.
Williams JD, McDermott JJ. Hermit crab biocoenoses: a worldwide review of the diversity and natural history of hermit crab associates. J Exp Mar Biol Ecol. 2004;305(1):1–128.
Google Scholar
Bienz M. beta-Catenin: a Pivot between cell adhesion and Wnt signalling. Curr Biol. 2005;15(2):R64–67.
Google Scholar
Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006;20(23):3199–214.
Google Scholar
Suzuki SC, Takeichi M. Cadherins in neuronal morphogenesis and function. Dev Growth Differ. 2008;50(Suppl 1):S119–130.
Google Scholar
Hernandez Prada JA, Haire RN, Allaire M, Jakoncic J, Stojanoff V, Cannon JP, Litman GW, Ostrov DA. Ancient evolutionary origin of diversified variable regions demonstrated by crystal structures of an immune-type receptor in amphioxus. Nat Immunol. 2006;7(8):875–82.
Google Scholar
Goldstein J, Funch P. A review on genus halichondria (Demospongiae, Porifera). J Mar Sci Eng. 2022;10(9):1312. https://doi.org/10.3390/jmse10091312.
Brauchle M, Bilican A, Eyer C, Bailly X, Martinez P, Ladurner P, Bruggmann R, Sprecher SG. Xenacoelomorpha survey reveals that all 11 animal homeobox gene classes were present in the first bilaterians. Genome Biol Evol. 2018;10(9):2205–17.
Google Scholar
Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3(10):e314.
Google Scholar
Ryan JF, Pang K, Program NCS, Mullikin JC, Martindale MQ, Baxevanis AD. The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that ctenophora and Porifera diverged prior to the ParaHoxozoa. Evodevo. 2010;1(1):9.
Google Scholar
Bosch TC, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G, Zill H, Rosenstiel P, Jacobs G, Schreiber S, Leippe M, et al. Uncovering the evolutionary history of innate immunity: the simple metazoan hydra uses epithelial cells for host defence. Dev Comp Immunol. 2009;33(4):559–69.
Google Scholar
Augustin R, Fraune S, Bosch TC. How hydra senses and destroys microbes. Semin Immunol. 2010;22(1):54–8.
Google Scholar
Poole AZ, Weis VM. TIR-domain-containing protein repertoire of nine anthozoan species reveals coral-specific expansions and uncharacterized proteins. Dev Comp Immunol. 2014;46(2):480–8.
Google Scholar
Sea UG, Sequencing C, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science. 2006;314(5801):941–52.
Google Scholar
Wong E, Molter J, Anggono V, Degnan SM, Degnan BM. Co-expression of synaptic genes in the sponge amphimedon Queenslandica uncovers ancient neural submodules. Sci Rep. 2019;9(1):15781.
Google Scholar
Ereskovsky AV, Renard E, Borchiellini C. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution. Dev Genes Evol. 2013;223(1–2):5–22.
Google Scholar
Knobloch S, Johannsson R, Marteinsson V. Bacterial diversity in the marine sponge halichondria Panicea from Icelandic waters and host-specificity of its dominant symbiont “Candidatus Halichondribacter symbioticus”. FEMS Microbiol Ecol. 2019;95(1):fiy220. https://doi.org/10.1093/femsec/fiy220.
Wang J-T, Chen Y-Y, Meng P-J, Sune Y-H, Hsu C-M, Wei K-Y, Chen CA. Diverse interactions between corals and the coral-killing sponge, Terpios Hoshinota (Suberitidae: Hadromerida). Zool Stud. 2012;51(2):150–9.
Teruya T, Nakagawa S, Koyama T, Arimoto H, Kita M, Uemura D. Nakiterpiosin and nakiterpiosinone, novel cytotoxic C-nor-D-homosteroids from the Okinawan sponge Terpios Hoshinota. Tetrahedron. 2004;60(33):6989–93.
Google Scholar
Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, et al. Coral reefs under rapid climate change and ocean acidification. Science. 2007;318(5857):1737–42.
Google Scholar
Guinotte JM, Fabry VJ. Ocean acidification and its potential effects on marine ecosystems. Ann N Y Acad Sci. 2008;1134:320–42.
Google Scholar
Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol. 2013;19(6):1884–96.
Google Scholar
Johnson KM, Hofmann GE. Combined stress of ocean acidification and warming influence survival and drives differential gene expression patterns in the Antarctic pteropod, limacina helicina Antarctica. Conserv Physiol. 2020;8(1):coaa013.
Google Scholar
Alter K, Jacquemont J, Claudet J, Lattuca ME, Barrantes ME, Marras S, Manriquez PH, Gonzalez CP, Fernandez DA, Peck MA, et al. Hidden impacts of ocean warming and acidification on biological responses of marine animals revealed through meta-analysis. Nat Commun. 2024;15(1):2885.
Google Scholar
Bass AV, Falkenberg LJ. Contrasting behavioural responses to ocean acidification and warming have the potential to disrupt herbivory. Clim Change Ecol 2023, 5.
Byrne M, Przeslawski R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr Comp Biol. 2013;53(4):582–96.
Google Scholar
Bauknecht P, Jekely G. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol. 2017;15(1):6.
Google Scholar
Byrne M, Fitzer S. The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. Conserv Physiol. 2019;7(1):coz062.
Google Scholar
Kultz D. Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol. 2003;206(Pt 18):3119–24.
Google Scholar
Kultz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol. 2005;67:225–57.
Google Scholar
Guzman C, Conaco C. Gene expression dynamics accompanying the sponge thermal stress response. PLoS ONE. 2016;11(10):e0165368.
Google Scholar
Webster N, Pantile R, Botte E, Abdo D, Andreakis N, Whalan S. A complex life cycle in a warming planet: gene expression in thermally stressed sponges. Mol Ecol. 2013;22(7):1854–68.
Google Scholar
Conaco C, Neveu P, Zhou H, Arcila ML, Degnan SM, Degnan BM, Kosik KS. Transcriptome profiling of the demosponge amphimedon Queenslandica reveals genome-wide events that accompany major life cycle transitions. BMC Genomics. 2012;13:209.
Google Scholar
Strader ME, Wong JM, Hofmann GE. Ocean acidification promotes broad transcriptomic responses in marine metazoans: a literature survey. Front Zool. 2020;17:7.
Google Scholar
Kaniewska P, Chan CK, Kline D, Ling EY, Rosic N, Edwards D, Hoegh-Guldberg O, Dove S. Transcriptomic changes in coral holobionts provide insights into physiological challenges of future climate and ocean change. PLoS ONE. 2015;10(10):e0139223.
Google Scholar
Silva CSE, Lemos MFL, Faria AM, Lopes AF, Mendes S, Goncalves EJ, Novais SC. Sand smelt ability to Cope and recover from ocean’s elevated CO(2) levels. Ecotoxicol Environ Saf. 2018;154:302–10.
Google Scholar
Lai X, Zhong Z, Lin B, Wu Y, Ma Y, Zhang C, Yang Y, Zhang M, Qin W, Fu X, et al. RNA-seq and qRT-PCR analyses reveal the physiological response to acute hypoxia and reoxygenation in epinephelus coioides. Front Physiol. 2022;13:1049776.
Google Scholar
Carballo JL, Bautista E, Nava H, Cruz-Barraza JA, Chavez JA. Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol Evol. 2013;3(4):872–86.
Google Scholar
Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS. Could some coral reefs become sponge reefs as our climate changes? Glob Chang Biol. 2013;19(9):2613–24.
Google Scholar
Mittermayer FH, Stiasny MH, Clemmesen C, Bayer T, Puvanendran V, Chierici M, Jentoft S, Reusch TBH. Transcriptome profiling reveals exposure to predicted end-of-century ocean acidification as a stealth stressor for Atlantic Cod larvae. Sci Rep. 2019;9(1):16908.
Google Scholar