Ward, B. B. & Nitrification An introduction and overview of the state of the field. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 3–8. (Washington, DC, 2011).
Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528 (7583), 504–509 (2015).
Google Scholar
Booth, M. S., Stark, J. M. & Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol. Monogr. 75 (2), 139–157 (2005).
Google Scholar
Huang, X. et al. Neutrophilic bacteria are responsible for autotrophic ammonia oxidation in an acidic forest soil. Soil. Biol. Biochem. 119, 83–89 (2018).
Google Scholar
Zhang, Q. et al. Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soil. Soil. Biol. Biochem. 131, 229–237 (2019).
Google Scholar
Yang, X. et al. Heavy nitrogen application increases soil nitrification through ammonia-oxidizing bacteria rather than archaea in acidic tea (Camellia sinensis L.) plantation soil. Sci. Total Environ. 717, 1–12 (2020).
Google Scholar
Lin, Y. et al. Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: A meta-analysis. Goderma 404, 1–7 (2021).
Li, C., Hu, H. W., Chen, Q. L., Chen, D. & He, J. Z. Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil. Biol. Biochem. 138, 107609 (2019).
Google Scholar
Wang, J., Smith, P., Hergoualch, K. & Zou, J. Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resour. Conserv. Recycl. 185, 106501 (2022).
Google Scholar
Ye, J. et al. Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality. Front. Plant. Sci. 13, 1055900 (2022).
Google Scholar
Tokuda, S. & Hayatsu, M. Nitrous oxide emission potential of 21 acidic tea field soils in Japan. Soil. Sci. Plant. Nutr. 47 (3), 637–642 (2001).
Google Scholar
Karak, T. et al. Major soil chemical properties of the major tea-growing areas in India. Pedosphere 25 (2), 316–328 (2015).
Google Scholar
Akiyama, H., Yan, X. & Yagi, K. Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in japan: summary of available data. Soil. Sci. Plant. Nutr. 52, 774–787 (2006).
Google Scholar
Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME J. 11 (5), 1130–1141 (2017).
Google Scholar
Takahashi, Y. et al. Enrichment of comammox and nitrite-oxidizing Nitrospira from acid soils. Front. Microbiol. 11, 1737 (2020).
Google Scholar
Tomiyama, H. et al. Characteristics of newly isolated nitrifying bacteria from rhizoplane of paddy rice. Microbes Environ. 16 (2), 101–108 (2001).
Google Scholar
Satoh, K., Itoh, C., Kang, D. J., Sumida, H. & Takahashi, R. Characteristics of newly isolated ammonia-oxidizing bacteria from acid sulfate soil and the rhizoplane of Leucaena grown in that soil. Soil. Sci. Plant. Nutr. 53, 23–31 (2010).
Google Scholar
Bhuiya, Z. H. & Walker, N. Autotrophic nitrifying bacteria in acid tea soils from Bangladesh and Sri Lanka. J. Appl. Bacteriol. 42, 253–257 (1977).
Google Scholar
Tago, K. et al. Environmental factors shaping the community structure of ammonia-oxidizing bacteria and archaea in sugarcane field soil. Microbes Environ. 30 (1), 21–28 (2015).
Google Scholar
Aigle, A., Prosser, J. I. & Gubry-Rangin, C. The application of high-throughput sequencing technology to analysis of AmoA phylogeny and environmental niche specialization of terrestrial bacterial ammonia-oxidisers. Environ. Microbiol. 14 (3), 1–10 (2019).
Google Scholar
Norton, J. M. et al. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl. Environ. Microbiol. 74 (11), 559–572 (2008).
Google Scholar
Rice, M. C. et al. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil. Stand. Genomic Sci. 11 (46), 1–8 (2016).
Google Scholar
Jiang, Q. Q. & Bakken, L. R. Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol. Ecol. 30, 171–186 (1999).
Google Scholar
Sanders, T., Fiencke, C., Hüpeden, J., Pfeiffer, E. M. & Spieck, E. Cold adapted Nitrosospira sp.: A potential crucial contributor of ammonia oxidation in cryosols of permafrost-affected landscapes in Northeast Siberia. Microorganisms 7 (12), 699 (2019).
Google Scholar
Mobarry, B. K., Wagner, M., Urbain, V., Rittmann, B. E. & Stahl, D. A. Phylogenetic probes for analyzing abundance and Spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62 (6), 2156–2162 (1996).
Google Scholar
Klotz, M. G. & Stein, L. Y. Genomics of ammonia-oxidizing bacteria and insights into their evolution. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 57–94. (Washington, DC, 2011).
Kozlowski, J. A., Kits, K. D. & Stein, L. Y. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Front. Microbiol. 7, 1090 (2016).
Google Scholar
Koper, T. E., El-Sheikh, A. F., Norton, J. M. & Klotz, M. G. Urease-encoding genes in ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 70 (4), 2342–2348 (2004).
Google Scholar
Urakawa, H. et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int. J. Syst. Evol. Microbiol. 65, 242–250 (2015).
Google Scholar
Tokuda, S. & Hayatsu, M. Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux. Soil. Sci. Plant. Nutr. 50 (3), 365–374 (2004).
Google Scholar
Hirono, Y. & Nonaka, K. Nitrous oxide emissions from green tea fields in japan: contribution of emissions from soil between rows and soil under the canopy of tea plants. Soil. Sci. Plant. Nutr. 58, 384–392 (2012).
Google Scholar
Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialization and differentiation. Trends Microbiol. 20 (11), 523–531 (2012).
Google Scholar
Zhang, L. M., Hu, H. W., Shen, J. P. & He, J. Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6, 1032–1045 (2012).
Google Scholar
Li, Y., Chapman, S. J., Nicol, G. W. & Yao, H. Nitrification and nitrifiers in acidic soils. Soil. Biol. Biochem. 116, 290–301 (2018).
Google Scholar
French, E., Kozlowski, J. A., Mukherjee, M., Bullerjahn, G. & Bollmann, A. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl. Environ. Microbiol. 78 (16), 5773–5780 (2012).
Google Scholar
Ying, J. et al. Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil. Biol. Biochem. 107, 10–18 (2017).
Google Scholar
Fan, D., Fan, K., Yu, C., Lu, Y. & Wang Xiao-chang. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition. Biomed. Biotechnol. 18 (2), 99–108 (2017).
Google Scholar
Tang, S. et al. The Inhibition effect of tea polyphenols on soil nitrification is greater than denitrification in tea garden soil. Sci. Total Environ. 778, 146328 (2021).
Google Scholar
Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).
Google Scholar
Onodera, Y., Nakagawa, T., Takahashi, R. & Tokuyama, T. Seasonal change in vertical distribution of ammonia-oxidizing archaea and bacteria and their nitrification in temperate forest soil. Microbes Environ. 25 (1), 28–35 (2010).
Google Scholar
Zhu, G. et al. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J. 5, 1905–1912 (2011).
Google Scholar
Tao, J. et al. Vertical distribution of ammonia-oxidizing microorganisms across a soil profile of the Chinese loess plateau and their responses to nitrogen inputs. Sci. Total Environ. 635, 240–248 (2018).
Google Scholar
Banning, N., Maccarone, L., Fisk, L. M. & Murphy, D. V. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci. Rep. 5, 11146 (2015).
Google Scholar
Du, J. et al. Ammonia-oxidizing archaea and ammonia-oxidizing bacteria communities respond differently in oxy-gen-limited habitats. Front. Environ. Sci. 10, 976618 (2022).
Google Scholar
Li, X. et al. Dynamics of ammonia oxidizers in response to different fertilization inputs in intensively managed agricultural soils. Appl. Soil. Ecol. 157, 103729 (2021).
Google Scholar
De Boer, W., Gunnewiek, P. J. A. K. & Laanbroek, H. J. Ammonium-oxidation at low pH by a chemolithotrophic bacterium belonging to the genus Nitrosospira. Soil. Biol. Biochem. 27 (2), 127–132 (1995).
Google Scholar
Walker, N. & Wickramasinghe, K. N. Nitrification and autotrophic nitrifying bacteria in acid tea soils. Soil. Biol. Biochem. 11, 231–236 (1979).
Google Scholar
Jumadi, O. et al. Community structure of ammonia oxidizing bacteria and their potential to produce nitrous oxide and carbon dioxide in acid tea soils. Geomicrobiol. J. 25, 381–389 (2008).
Google Scholar
Yao, H. et al. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soil. Appl. Environ. Microbiol. 77 (13), 4618–4625 (2011).
Google Scholar
Okamura, K., Takanashi, A., Yamada, T. & Hiraishi, A. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil. J. Phys: Conf. Ser. 352, 012052 (2012).
Wang, X. et al. Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil. Biol. Biochem. 84, 28–37 (2015).
Google Scholar
Lin, Y. et al. Nitrosospira cluster 8a plays a predominant role in the nitrification process of a subtropical ultisol under long-term inorganic and organic fertilization. Appl. Environ. Microbiol. 84, e01031–e01018 (2018).
Google Scholar
Lourenço, K. S. et al. Nitrosospira sp. govern nitrous oxide emissions in a tropical soil amended with residues of bioenergy crop. Front. Microbiol. 9, 1–11 (2018).
Google Scholar
Pommering-Röser, A. & Koops, H. P. Environmental pH as an important factor for the distribution of urease positive ammonia-oxidizing bacteria. Microbiol. Res. 160, 27–35 (2005).
Google Scholar
Norton, J. M. Diversity and Environmental Distribution of Ammonia-Oxidizing Bacteria. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 39–55. (Washington, DC, 2011).
Allison, S. M. & Prosser, J. I. Urease activity in neutrophilic autotrophic ammonia -oxidizing bacteria isolated from acid soils. Soil. Biol. Biochem. 23 (1), 45–51 (1991).
Google Scholar
Thandar, S. M., Ushiki, N., Fujitani, H., Tsuneda, Y. & Sekiguchi & Ecophysiology and comparative genomics of Nitrosomonas mobilis Ms1 isolated from autotrophic nitrifying granules of wastewater treatment bioreactor. Front. Microbiol. 7 (1869), 1–14 (2016).
Belser, L. W. & Schmidt, E. L. Growth and oxidation kinetics of three genera of ammonia oxidizing nitrifiers. FEMS Microbiol. Lett. 7, 213–216 (1980).
Google Scholar
Hayatsu, M. The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium. Soil. Sci. Plant. Nutr. 39, 219–226 (1993).
Google Scholar
Allison, S. M. & Prosser, J. I. Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil. Biol. Biochem. 125 (7), 935–941 (1993).
Google Scholar
De Boer, W., Gunnewiek, P. J. A. K., Veenhuis, M., Bock, E. & Laanbroek, H. J. Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl. Environ. Microbiol. 57 (12), 3600–3604 (1991).
Google Scholar
Suzuki, I., Dular, U. & Kwok, S. C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas Europaea cells and extracts. J. Bacteriol. 120 (1), 556–558 (1974).
Google Scholar
Koper, T. E., Stark, J. M., Habteselassie, M. Y. & Norton, J. M. Nitrification exhibits Haldane kinetics in an agricultural soil treated with ammonium sulfate or dairy-waste compost. FEMS Microbiol. Ecol. 74 (2), 316–322 (2010).
Google Scholar
Jung, M. Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2021).
Google Scholar
Berube, P. M. & Stahl, D. A. The divergent AmoC3 subunit of ammonia monooxygenase functions as part of a stress response system in Nitrosomonas Europaea. J. Bacteriol. 194 (13), 3448–3456 (2012).
Google Scholar
Stein, L. Y. Heterotrophic Nitrification and Nitrifier Denitrification. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 95–114. (Washington, DC, 2011).
Sedlacek, C. J. et al. Transcriptomic response of Nitrosomonas europaea transitioned from ammonia- to oxygen-limited steady-state growth. mSystems 5 (1), e00562-19 (2020).
Cantaro, J. D., Vilbert, A. C. & Lancaster, K. M. Nitrosomonas Europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission. Proc. Natl. Acad. Sci. USA. 113 (52), 14704–14709 (2016).
Google Scholar
Elmore, B. O., Bergmann, D. J., Klotz, M. G. & Hooper, A. B. Cytochromes P460 and c’-beta; a new family of high-spin cytochromes c. FEBS Lett. 581 (5), 911–916 (2007).
Google Scholar
Shaw, L. J. et al. Nitrosospira spp. Can produce nitrous oxide via a nitrifier denitrification pathway. Environ. Microbiol. 8 (2), 214–222 (2005).
Google Scholar
IFA. Fertilizer use by crop and country for the 2017–2018 period. International Fertilizer Association (IFA) 2022, Paris, France. Electronic source: (2023). https://www.ifastat.org/consumption/fertilizer-use-by-crop
De Boer, W. & Kowalchuk, G. A. Nitrification in acid soils: micro-organisms and mechanisms. Soil. Biol. Biochem. 33, 853–866 (2001).
Google Scholar
Zorz, J. K., Kozlowski, J. A., Stein, L. Y., Strous, M. & Kleiner, M. Comparative proteomics of three species of ammonia-oxidizing bacteria. Front. Microbiol. 9, 938 (2018).
Google Scholar
Isshiki, R., Fujitani, H. & Tsuneda, S. Transcriptome analysis of the ammonia-oxidizing bacterium Nitrosomonas mobilis Ms1 reveals division of labor between aggregates and free-living cells. Microbes Environ. 35 (2), 1–9 (2020).
Google Scholar
Schmidt, E. L. & Belser, L. W. Autotrophic nitrifying bacteria. In: Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties (eds. Weaver, R. W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A.) 159–177. (Madison, WI, 1994).
Kempers, A. J. Determination of sub-microquantities of ammonium and nitrates in soils with phenol, sodiumnitroprusside and hypochlorite. Geoderma 12, 201–206 (1974).
Google Scholar
Keeney, D. R. & Nelson, D. W. Nitrogen–inorganic forms. In: Methods of Soil Analysis: Part 2. Agronomy Monogr. no.9, 2nd ed. (ed. Page, A.L. et al.) 643–687 (Madison, WI, 1982).
Cataldo, D. A., Haroon, M., Schrader, L. E. & Youngs, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil. Sci. Plant. Anal. 6, 71–80 (1975).
Google Scholar
Rottahauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63 (12), 4704–4712 (1997).
Google Scholar
Nicolaisen, M. H. & Ramsing, N. B. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods. 50 (2), 189–203 (2002).
Google Scholar
Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10 (5), 1357–1364 (2008).
Google Scholar
Morimoto, S. et al. Quantitative analyses of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in fields with different soil types. Microbes Environ. 26 (3), 248–253 (2011).
Google Scholar
Yang, W., Wang, Y., Tago, K., Tokuda, S. & Hayatsu, M. Comparison of the effects of phenylhydrazine hydrochloride and Dicyandiamide on ammonia-oxidizing bacteria and archaea in andosols. Front. Microbiol. 8, 2226 (2017).
Google Scholar
Ammann, R. I., Krumhokz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Microbiol. 172 (2), 762–770 (1990).
Ardui, S., Ameur, A., Vermeesch, J. R. & Hestand, M. S. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res. 46 (5), 2159–2168 (2018).
Google Scholar
Mak, Q. X. C., Wick, R. R., Holt, J. M. & Wang, J. R. Polishing de Novo nanopore assemblies of bacteria and eukaryotes with FMLRC2. Mol. Biol. Evol. 40 (3), msad048 (2023).
Google Scholar
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13 (6), e1005595 (2017).
Google Scholar
Wick, R. R. et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 22 (1), 266 (2021).
Google Scholar
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25 (7), 1043–1055 (2015).
Google Scholar
Tanizawa, Y., Fujisawa, T. & Nakamura, Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinform 34 (6), 1037–1039 (2018).
Google Scholar
Schwengers, O. et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom. 7 (11), 000685 (2021).
Google Scholar
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinform 30 (9), 1236–1240 (2014).
Google Scholar
Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38 (12), 5825–5829 (2021).
Google Scholar
Graham, E. D., Heidelberg, J. F. & Tully, B. J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12, 1861–1866 (2018).
Google Scholar
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 (1), 27–30 (2000).
Google Scholar
Kanehisa, M. Toward Understanding the origin and evolution of cellular organisms. Protein Sci. 28 (11), 1947–1951 (2019).
Google Scholar
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51 (D1), D587–D592 (2023).
Google Scholar
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 (W1), W293–W296 (2021).
Google Scholar
Xu, L. et al. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47, W52–W58 (2019).
Google Scholar
Criscuolo, A. On the transformation of MinHash-based uncorrected distances into proper evolutionary distances for phylogenetic inference. F1000Research 9, 1309 (2020).
Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30 (14), 3059–3066 (2002).
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyax, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
Google Scholar
Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for MacOS. Mol. Biol. Evol. 37, 1237–1239 (2020).
Google Scholar
Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).
Google Scholar
Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints. 4, e1900v1 (2016).
Verhagen, F. J. M. & Laanbroek, H. J. Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy limited Chemostats. Appl. Environ. Microbiol. 57 (11), 3255–3263 (1991).
Google Scholar
Bollman, A., French, E. & Laanbroek, H. J. Chapter three – Isolation, cultivation, and characterization of Ammonia-Oxidizing bacteria and archaea adapted to low ammonium concentrations. In: Methods in Enzymology, Research on Nitrification and Related Process, Part A (ed Klotz, M. G.) 55–88 (Amsterdam, 2011).
De Mendiburu, F. Una herramienta de analisis estadistico para la investigacion agricola. Tesis. Universidad Nacional de Ingenieria (UNI-PERU). Electronic source: (2009). https://github.com/cran/agricolae (2023).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Electronic source: (2021). https://www.R-project.org/ (2023).
RStudio: Integrated Development for RStudio Team 2020, RStudio, R. & Boston, M. A. PBC, Electronic source: (2023). http://www.rstudio.com/
Stein, L. Y. et al. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ. Micriobiol. 9 (12), 2993–3007 (2007).
Google Scholar