Kink strengthening and rank-1 connection of crustal rocks

  • Karato, S.-I. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth (Cambridge University Press, 2008).

    Book 

    Google Scholar 

  • Anderson, T. B. Kink-bands and related geological structures. Nature 204, 773–774 (1964).

    Article 
    ADS 

    Google Scholar 

  • Hagihara, K., Ueyama, R., Yamasaki, M., Kawamura, Y. & Nakano, T. Surprising increase in yield stress of Mg single crystal using long-period stacking ordered nanoplates. Acta Mater. 209, 116797 (2021).

    Article 
    CAS 

    Google Scholar 

  • Somekawa, H., Ando, D., Hagihara, K., Yamasaki, M. & Kawamura, Y. Intrinsic kink bands strengthening induced by several wrought-processes in Mg-Y-Zn alloys containing LPSO phase. Mater. Charact. 179, 111348 (2021).

    Article 
    CAS 

    Google Scholar 

  • Inamura, T. Geometry of kink microstructure analysed by rank-1 connection. Acta Mater. 173, 270–280 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hagihara, K., Li, Z., Yamasaki, M., Kawamura, Y. & Nakano, T. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys. Acta Mater. 163, 226–239 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hagihara, K., Yamasaki, M., Kawamura, Y. & Nakano, T. Strengthening of Mg-based long-period stacking ordered (LPSO) phase with deformation kink bands. Mater. Sci. Eng. A. 763, 138163 (2019).

    Article 
    CAS 

    Google Scholar 

  • Du, Z. et al. Rolling reduction-dependent deformation mechanisms and tensile properties in a β titanium alloy. J. Mater. Sci. Technol. 104, 183–193 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tadano, Y. Numerical investigation of kink strengthening mechanism due to kink band in long-period stacking ordered magnesium alloy. Mater. Trans. 64, 1002–1010 (2023).

    Article 
    CAS 

    Google Scholar 

  • Hagihara, K. et al. Quantitative estimation of kink-band strengthening in an Mg–Zn–Y single crystal with LPSO nanoplates. Mater. Res. Lett. 9, 467–474 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ball, J. M. & James, R. D. Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987).

    Article 
    MathSciNet 

    Google Scholar 

  • Nishikawa, O. & Takeshita, T. Dynamic analysis and two types of kink bands in quartz veins deformed under subgreenschist conditions. Tectonophysics 301, 21–34 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Anderson, E. K., Song, W. J., Johnson, S. E. & Cruz-Uribe, A. M. Mica kink-band geometry as an indicator of coseismic dynamic loading. Earth Planet. Sci. Lett. 567, 117000 (2021).

    Article 
    CAS 

    Google Scholar 

  • Baronnet, A. & Olives, J. The geometry of micas around kink band boundaries I. A crystallographic model. Tectonophysics 91, 359–373 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Starkey, J. The geometry of kink bands in crystals—A simple model. Contrib. Mineral. Petrol. 19, 133–141 (1968).

    Article 
    ADS 

    Google Scholar 

  • Powell, C. M., Cole, J. P. & Cudahy, T. J. Megakinking in the Lachlan fold belt Australia. J. Struct. Geol. 7, 281–300 (1985).

    Article 
    ADS 

    Google Scholar 

  • Kano, K., Kosaka, K., Murata, A. & Yanai, S. Intra-arc deformations with vertical rotation axes: The case of the pre-middle Miocene terranes of southwest Japan. Tectonophysics 176, 333–354 (1990).

    Article 
    ADS 

    Google Scholar 

  • Pachell, M. A., Evans, J. P. & Lansing Taylor, W. Kilometer-scale kinking of crystalline rocks in a transpressive convergent setting, Central Sierra Nevada California. Geol. Soc. Am. Bull. 115, 817–831 (2003).

    Article 
    ADS 

    Google Scholar 

  • Goscombe, B. D., Findlay, R. H., McClenaghan, M. P. & Everard, J. Multi-scale kinking in northeast Tasmania: Crustal shortening at shallow crustal levels. J. Struct. Geol. 16, 1077–1092 (1994).

    Article 
    ADS 

    Google Scholar 

  • Vogler, W. S. Fabric development in a fragment of tethyan oceanic lithosphere from the piemonte ophiolite nappe of the western Alps, Valtournanche Italy. J. Struct. Geol. 9, 935–953 (1987).

    Article 
    ADS 

    Google Scholar 

  • Godin, L. & Harris, L. B. Tracking basement cross-strike discontinuities in the Indian crust beneath the Himalayan orogen using gravity data—Relationship to upper crustal faults. Geophys. J. Int. 198, 198–215 (2014).

    Article 
    ADS 

    Google Scholar 

  • Biot, M. A. Mechanics of Incremental Deformation (Wiley, New York, 1965).

    Book 

    Google Scholar 

  • Biot, M. A. Internal buckling under initial stress in finite elasticity. Proc. R. Soc. Lond. A. 273, 306–328 (1963).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Cobbold, P. R., Cosgrove, J. W. & Summers, J. M. Development of internal structures in deformed anisotropic rocks. Tectonophysics 12, 23–53 (1971).

    Article 
    ADS 

    Google Scholar 

  • Johnson, A. M. & Ellen, S. D. A theory of concentric, kink, and sinusoidal folding and of monoclinal flexuring of compressible, elastic multilayers: I introduction. Tectonophysics 21, 301–339 (1974).

    Article 
    ADS 

    Google Scholar 

  • Latham, J.-P. The influence of nonlinear material properties and resistance to bending on the development of internal structures. J. Struct. Geol. 7, 225–236 (1985).

    Article 
    ADS 

    Google Scholar 

  • Aslin, J., Mariani, E., Dawson, K. & Barsoum, M. Ripplocations provide a new mechanism for the deformation of phyllosilicates in the lithosphere. Nat. Commun. 10, 686 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Badr, H. O. et al. Confined buckling in thin sheets and its correlation to ripplocations: A deformation mechanism in layered solids. Phys. Rev. Mater. 5, 093603 (2021).

    Article 
    CAS 

    Google Scholar 

  • Weiss, L. E. Flexural slip folding of foliated model materials. Geol. Surv. Can. Pap. 68, 294–357 (1968).

    Google Scholar 

  • Stewart, K. G. & Alvarez, W. Mobile-hinge kinking in layered rocks and models. J. Struct. Geol. 13, 243–259 (1991).

    Article 
    ADS 

    Google Scholar 

  • Anderson, T. B. The relationship between kink–bands and shear fractures in the experimental deformation of slate. J. Geol. Soc. Lond. 130, 367–382 (1974).

    Article 

    Google Scholar 

  • Kronenberg, A. K., Kirby, S. H. & Pinkston, J. Basal slip and mechanical anisotropy of biotite. J. Geophys. Res. 95, 19257–19278 (1990).

    Article 
    ADS 

    Google Scholar 

  • Etheridge, M. A., Hobbs, B. E. & Paterson, M. S. Experiental deformation of single crystals of biotite. Contrib. Miner. Pet. 38, 21–36 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Borg, I. & Handin, J. Experimental deformation of crystalline rocks. Tectonophysics 3, 249–367 (1966).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Misra, S. & Burg, J.-P. Mechanics of kink-bands during torsion deformation of muscovite aggregate. Tectonophysics 548–549, 22–33 (2012).

    Article 
    ADS 

    Google Scholar 

  • Mares, V. M. & Kronenberg, A. K. Experimental deformation of muscovite. J. Struct. Geol. 15, 1061–1075 (1993).

    Article 
    ADS 

    Google Scholar 

  • Plummer, G. et al. On the origin of kinking in layered crystalline solids. Mater. Today 43, 45–52 (2021).

    Article 
    CAS 

    Google Scholar 

  • Srivastava, D. C., Lisle, R. J., Imran, M. & Kandpal, R. The kink–band triangle: A triangular plot for paleostress analysis from kink-bands. J. Struct. Geol. 20, 1579–1586 (1998).

    Article 
    ADS 

    Google Scholar 

  • Shinohara, Y., Akabane, S. & Inamura, T. Analysis of variant-pairing tendencies in lenticular martensite microstructures based on rank-1 connection. Sci. Rep. 11, 14957 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yokoyama, H. & Nagahama, H. Some interface theories and Hall–Petch relationship. R. Soc. Open Sci. 12, 241954 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hadamard, J. Leçons Sur La Propagation Des Ondes et Les Équations de l’hydrodynamique (A. Hermann, 1903).

    Google Scholar 

  • Mayama, T. et al. α-Mg/LPSO (long-period stacking ordered) phase interfaces as obstacles against dislocation slip in as-cast Mg-Zn-Y alloys. Int. J. Plast. 154, 103294 (2022).

    Article 
    CAS 

    Google Scholar 

  • Turner, F. J., Griggs, D. T. & Heard, H. Experimental deformation of calcite crystals. GSA Bull. 65, 883–934 (1954).

    Article 
    CAS 

    Google Scholar 

  • Lacombe, O., Parlangeau, C., Beaudoin, N. E. & Amrouch, K. Calcite twin formation, measurement and use as stress–strain indicators: A review of progress over the last decade. Geosciences 11, 445 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rybacki, E., Evans, B., Janssen, C., Wirth, R. & Dresen, G. Influence of stress, temperature, and strain on calcite twins constrained by deformation experiments. Tectonophysics 601, 20–36 (2013).

    Article 
    ADS 

    Google Scholar 

  • Rowe, K. J. & Rutter, E. H. Palaeostress estimation using calcite twinning: Experimental calibration and application to nature. J. Struct. Geol. 12, 1–17 (1990).

    Article 
    ADS 

    Google Scholar 

  • Underwood, E. E. Particle-Size Distribution. In Quantitative Microscopy (eds DeHoff, R. T. & Rhines, F. N.) pp.149–200 (McGraw-Hill, New York, 1968).

    Google Scholar 

  • Rybacki, E., Niu, L. & Evans, B. Semi-brittle deformation of Carrara marble: Hardening and twinning induced plasticity. J. Geophys. Res. Solid Earth 126, e2021JB022573 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Suppe, J. Principles of Structural Geology (Prentice Hall, 1985).

    Google Scholar 

  • Debacker, T. N., Seghedi, A., Belmans, M. & Sintubin, M. Contractional kink bands formed by stress deflection along pre-existing anisotropies? Examples from the anglo-brabant deformation belt (Belgium) and the north Dobrogea Orogen (Romania). J. Struct. Geol. 30, 1047–1059 (2008).

    Article 
    ADS 

    Google Scholar 

  • Moreira, N. & Dias, R. Accommodation structures during kink band evolution; quantitative methods applied to late Variscan deformation of Portugal. J. Struct. Geol. 156, 104550 (2022).

    Article 

    Google Scholar 

  • Davis, T. L. & Namson, J. S. A balanced cross-section of the 1994 northridge earthquake, southern California. Nature 372, 167–169 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Suppe, J. Geometry and kinematics of fault-bend folding. Am. J. Sci. 283, 684–721 (1983).

    Article 
    ADS 

    Google Scholar 

  • Davis, D., Suppe, J. & Dahlen, F. A. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88, 1153–1172 (1983).

    Article 
    ADS 

    Google Scholar 

  • Woodward, N. B., Boyer, S. E. & Suppe, J. Balanced geological cross-sections: An essential technique in geological research and exploration. Am. Geophys. Union Short Course Geol. 6, 133 (1989).

    Google Scholar 

  • Dahlstrom, C. D. A. Balanced cross sections. Can. J. Earth Sci. 6, 743–757 (1969).

    Article 
    ADS 

    Google Scholar 

  • Hossack, J. R. The use of balanced cross-sections in the calculation of orogenic contraction: A review. J. Geol. Soc. London 136, 705–711 (1979).

    Article 

    Google Scholar 

  • Dal Zilio, L., van Dinther, Y., Gerya, T. & Avouac, J.-P. Bimodal seismicity in the Himalaya controlled by fault friction and geometry. Nat. Commun. 10, 48 (2019).

    Article 
    ADS 

    Google Scholar 

  • Jayawickrama, E. G., Muto, J., Sasaki, O. & Nagahama, H. Damage evolution of onnagawa shale by postmortem thresholding of X-ray computed tomography. J. Geophys. Res. Solid Earth 126, e2021JB022056 (2021).

    Article 
    ADS 

    Google Scholar 

  • Jayawickrama, E. G., Muto, J., Sasaki, O. & Nagahama, H. The quantitative characterization of hydraulic fracture connectivity from a postmortem investigation. J. Geophys. Eng. 19, 211–226 (2022).

    Article 

    Google Scholar 

  • Onuma, K., Muto, J., Nagahama, H. & Otsuki, K. Electric potential changes associated with nucleation of stick–slip of simulated gouges. Tectonophysics 502, 308–314 (2011).

    Article 
    ADS 

    Google Scholar 

  • Noda, H. & Takahashi, M. Correction of output from an internal load cell in a high-pressure triaxial deformation apparatus without a split-piston. J. Geol. Soc. Jpn. 122, 653–658 (2016).

    Article 
    CAS 

    Google Scholar 

  • Gay, N. C. & Weiss, L. E. The relationship between principal stress directions and the geometry of kinks in foliated rocks. Tectonophysics 21, 287–300 (1974).

    Article 
    ADS 

    Google Scholar 

  • Continue Reading