Transmission of apple stem grooving virus (Capillovirus mali) to apple from the soil-borne fungus Fusarium solani | BMC Plant Biology

  • FAOSTAT: Crops and livestock products. https://www.fao.org/faostat/en/#data/TCL. Accessed 10 Mar 2025.

  • Brite EB. The origins of the apple in central Asia. J World Prehist. 2021;34:159–93.

    Google Scholar 

  • Cornille A, Gladieux P, Smulders MJM, Roldán-Ruiz I, Laurens F, Cam BL, Nersesyan A, Clavel J, Olonova M, FeugeyIvan L, Gabrielyan I, Zhang X, Tenaillon MI, Giraud T. New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet. 2012;8: e11002703.

    Google Scholar 

  • Ji Z, Zhao X, Duan H, Hu T, Wang S, Wang Y, Cao K. Multiplex RT-PCR detection and distribution of four apple viruses in China. Acta Virol. 2013;57:435–41.

    PubMed 

    Google Scholar 

  • Chen S, Ye T, Hao L, Chen H, Wang S, Fan Z, Guo L, Zhou T. Infection of apple by apple stem grooving virus leads to extensive alterations in gene expression patterns but no disease symptoms. PLoS One. 2014;9: e95239.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Malandraki I, Beris D, Isaioglou I, Olmos A, Varveri C, Vassilakos N. Simultaneous detection of three pome fruit tree viruses by one-step multiplex quantitative RT-PCR. PLoS One. 2017;12: e0180877.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shokri S, Shujaei K, Gibbs AJ, Hajizadeh M. Evolution and biogeography of apple stem grooving virus. Virol J. 2023;20: 105.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoon JY, Joa JH, Choi KS, Do KS, Lim HC, Chung BN. Genetic diversity of a natural population of apple stem pitting virus isolated from apple in Korea. Plant Pathol J. 2014;30:195–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Y, Deng C, Bian Y, Zhao X, Zhou Q. Characterization of apple stem grooving virus and apple chlorotic leaf spot virus identified in a crab apple tree. Arch Virol. 2016;162:1093–7.

    PubMed 

    Google Scholar 

  • Pina A, Errea P. A review of new advances in mechanism of graft compatibility–incompatibility. Sci Hortic. 2005;106:1–11.

    Google Scholar 

  • Brakta A, Thakur PD, Handa A. First report of apple top working disease caused by viruses (apple stem grooving virus, apple chlorotic leaf spot virus, and apple stem pitting virus) in apple in India. Plant Dis. 2013;97:1001.

    PubMed 

    Google Scholar 

  • Massart S, Olmos A, Jijakli H, Candresse T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. 2014;188:90–6.

    PubMed 

    Google Scholar 

  • Chen J, Tang H, Li L, Qin S, Wang G, Hong N. Effects of virus infection on plant growth, root development and phytohormone levels in in vitro-cultured pear plants. Plant Cell. 2017;131:359–68.

    Google Scholar 

  • Cembali T, Folwell RJ, Wandschneider P, Eastwell KC, Howell WE. Economic implications of a virus prevention program in deciduous tree fruits in the US. Crop Prot. 2003;22:1149–56.

    Google Scholar 

  • Kishigami R, Yamagishi N, Ito T, Yoshikawa N. Detection of apple latent spherical virus in seeds and seedlings from infected apple trees by reverse transcription quantitative PCR and deep sequencing: evidence for lack of transmission of the virus to most progeny seedlings. J Gen Plant Pathol. 2014;80:490–8.

    Google Scholar 

  • Pethybridge SJ, Wilson CR, Hay FS, Leggett GW, Sherriff LJ. Mechanical transmission of apple mosaic virus in Australian hop (Humulus lupulus) gardens. Ann Appl Biol. 2002;141:77–85.

    Google Scholar 

  • Jiao J, Kong K, Han J, Song S, Bai T, Song C, Wang M, Yan Z, Zhang H, Zhang R, Feng J, Zheng X. Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a-based visual assay. Plant Biotechnol J. 2021;19:394–405.

    PubMed 

    Google Scholar 

  • Zhao L, Wang M, Cui Z, Chen L, Volk GM, Wang Q. Combining thermotherapy with cryotherapy for efficient eradication of apple stem grooving virus from infected in-vitro-cultured apple shoots. Plant Dis. 2018;102:1574–80.

    PubMed 

    Google Scholar 

  • Heitefuss R. Virus and virus-like diseases of pome and stone fruits. J Phytopathol. 2012;160:508–508.

    Google Scholar 

  • Grimová L, Winkowska L, Zíka L, Rysanek P. Distribution of viruses in old commercial and abandoned orchards and wild apple trees. J Plant Pathol. 2016;98:549–54.

    Google Scholar 

  • Schröder M. Soil transmission studies with four pome fruit viruses. J Kulturpfl. 2021;73:72–82.

    Google Scholar 

  • Yang J, Liu P, Zhong K, Ge T, Chen L, Hu H, Zhang T, Zhang H, Guo J, Sun B, Chen J. Advances in understanding the soil-borne viruses of wheat: from the laboratory bench to strategies for disease control in the field. Phytopathol Res. 2022;4: 27.

    Google Scholar 

  • Singh S, Awasthi LP, Jangre A. Chapter 24 – Transmission of plant viruses in fields through various vectors. Appl Plant Virol. 2020;313–334.

  • Andika IB, Wei S, Cao C, Salaipeth L, Sun L. Phytopathogenic fungus hosts a plant virus: a naturally occurring cross-kingdom viral infection. Proc Natl Acad Sci U S A. 2017. https://doi.org/10.1073/pnas.1714916114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A. 2013;110:6548–53.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182(2):314–30.

    PubMed 

    Google Scholar 

  • Guo Z, Qin Y, Lv J, Wang X, Ye T, Dong X, Du N, Zhang T, Piao F, Dong H, Shen S. High red/far-red ratio promotes root colonization of Serratia plymuthica A21–4 in tomato by root exudates-stimulated chemotaxis and biofilm formation. Plant Physiol Biochem. 2024;206: 108245.

    PubMed 

    Google Scholar 

  • Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479–480:356–68.

    PubMed 

    Google Scholar 

  • Kanyuka K, Ward E, Adams MJ. Polymyxa graminis and the cereal viruses it transmits: a research challenge. Mol Plant Pathol. 2003;4:393–406.

    PubMed 

    Google Scholar 

  • Wei S, Bian R, Andika IB, Niu E, Sun L. Symptomatic plant viroid infections in phytopathogenic fungi. PNAS. 2019;116:13042–50.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee Marzano SY, Nelson BD, Ajayi-Oyetunde O, Bradley CA, Hughes TJ, Hartman GL, Eastburn DM, Domier LL. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. J Virol. 2016;90:6846–63.

    Google Scholar 

  • Dolja VV, Koonin EV. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 2018;244:36–52.

    PubMed 

    Google Scholar 

  • Shim HK, Hwang KH, Shim CK, Son SW, Kim D, Choi YM, Chung Y, Kim DH, Jee HJ, Lee SC. The pear black necrotic leaf spot disease virus transmitted by Talaromyces flavus displays pathogenicity similar to apple stem grooving virus strains. Plant Pathol J. 2006;22:255–9.

    Google Scholar 

  • Guo J, Yin J, Hu H, Zhang T, Ye Z, Yang J, Liu H, Chen J, Liu J. Molecular characterization of a novel benyvirus infecting wheat in China. Arch Virol. 2023;168: 284.

    PubMed 

    Google Scholar 

  • Dai R, Yang S, Pang T, Tian M, Wang H, Zhang D, Wu Y, Kondo H, Andika IB, Kang Z, Sun L. Identification of a negative-strand RNA virus with natural plant and fungal hosts. Proc Natl Acad Sci U S A. 2024. https://doi.org/10.1073/pnas.2319582121.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng C, Zhang M, Niu Y, Zhang M, Geng Y, Deng H. Comparison of fungal genera isolated from cucumber plants and rhizosphere soil by using carious cultural media. J Fungi. 2023;9(9): 934.

    Google Scholar 

  • Gardes M, Bruns TD. Its primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 2008;2:113–8.

    Google Scholar 

  • Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238–46.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu G, Dong Y, Zhang Z, Fan X, Ren F. Elimination of apple necrosis mosaic virus from potted apple plants by thermotherapy combined with shoot-tip grafting. Sci Hortic. 2019;252:310–5.

    Google Scholar 

  • Dhir S, Walia Y, Zaidi AA, Hallan V. A simplified strategy for studying the etiology of viral diseases: Apple stem grooving virus as a case study. J Virol Methods. 2015;213:106–10.

    PubMed 

    Google Scholar 

  • Kumar S, Stecher G, Suleski M, Sanderford M, Sharma S, Tamura K, Battistuzzi FU. MEGA12: molecular evolutionary genetic analysis version 12 for adaptive and green computing. Mol Biol Evol. 2024;41:1–9.

    Google Scholar 

  • Bouma TJ, Nielsen KL, Koutstaal B. Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil. 2000;218:185–96.

    Google Scholar 

  • Sun J, Yang L, Yang X, Wei J, Li L, Guo E, Kong Y. Using spectral reflectance to estimate the leaf chlorophyll content of maize inoculated with arbuscular mycorrhizal fungi under water stress. Front Plant Sci. 2021;12: 646173.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghabrial SA, Suzuki N. Viruses of plant pathogenic fungi. Annu Rev Phytopathol. 2009;47:353–84.

    PubMed 

    Google Scholar 

  • Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76:159–216.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Parrish CR, Holmes EC, Morens DM, Park E, Burke DS, Calisher CH, Laughlin CA, Saif LJ, Daszak P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol. 2008;72:457–70.

    Google Scholar 

  • Ajmal M, Hussain A, Ali A, Chen H, Lin H. Strategies for controlling the sporulation in Fusarium spp. J Fungi. 2022;9: 10.

    Google Scholar 

  • Luo X, Li J, Dong J, Sui A, Sheng M, Yang X. First report of Fusarium solani causing root rot on Coptis chinensis in southwestern China. Plant Dis. 2014;98:1273.

    PubMed 

    Google Scholar 

  • Yang M, Jiao J, Liu Y, Li M, Xia Y, Hou F, Huang C, Zhang H, Wang M, Shi J, Wan R, Zhang K, Hao P, Bai T, Song C, Feng J, Zheng X. Genome-wide investigation of defensin genes in apple (Malus×domestica Borkh.) and in vivo analyses show that MdDEF25 confers resistance to Fusarium solani. J Integr Agric. 2025;24:161–75.

    Google Scholar 

  • Xie J, Jiang D. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu Rev Phytopathol. 2014;52:45–68.

    PubMed 

    Google Scholar 

  • Janda M, Ahlquist P. RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae. Cell. 1993;72:961–70.

    PubMed 

    Google Scholar 

  • Nagy PD. Yeast as a model host to explore plant virus-host interactions. Annu Rev Phytopathol. 2008;46:217–42.

    PubMed 

    Google Scholar 

  • Mascia T, Nigro F, Abdallah A, Ferrara M, De Stradis A, Faedda R, Palukaitis P, Gallitelli D. Gene silencing and gene expression in phytopathogenic fungi using a plant virus vector. Proc Natl Acad Sci U S A. 2014;111:4291–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology. 2015;479–480:2–25.

    PubMed 

    Google Scholar 

  • Dias F, Dias H. Transmission of cucumber necrosis virus by Olpidium cucurbitacearum Barr & Dias. Virology. 1970;40:828–39.

    PubMed 

    Google Scholar 

  • Temmink JHM, Campbell RN, Smith PR. Specificity and site of in vitro acquisition of tobacco necrosis virus by zoospoores of Olpidium brassicae. J Gen Virol. 1970;9:201–3.

    Google Scholar 

  • Shi M, Lin X, Tian J, Chen L, Chen X, Li C, Qin X, Li J, Cao J, Eden JS, Buchmann J, Wang W, Xu J, Holmes EC, Zhang Y. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539–43.

    PubMed 

    Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell. 2010;22:3130–41.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Noda H, Yamagishi N, Yaegashi H, Xing F, Xie J, Li S, Zhou T, Ito T, Yoshikawa N. Apple necrotic mosaic virus, a novel ilarvirus from mosaic-diseased apple trees in Japan and China. J Gen Plant Pathol. 2017;83.

    Google Scholar 

  • Komorowska B, Malinowski T, Michalczuk L. Evaluation of several RT-PCR primer pairs for the detection of apple stem pitting virus. J Virol Methods. 2010;168:242–7.

    PubMed 

    Google Scholar 

  • Sipahioglu HM, Usta M, Ocak M. Use of dried high-phenolic laden host leaves for virus and viroid preservation and detection by PCR methods. J Virol Methods. 2006;137:120–4.

    PubMed 

    Google Scholar 

  • Continue Reading