Filho AM, Laversanne M, Ferlay J, Colombet M, Piñeros M, Znaor A, et al. The GLOBOCAN 2022 cancer estimates: data sources, methods, and a snapshot of the cancer burden worldwide. Int J Cancer. 2025;156(7):1336–46.
Google Scholar
Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284–96.
Google Scholar
Clamp AR, James EC, McNeish IA, Dean A, Kim JW, O’Donnell DM, et al. Weekly dose-dense chemotherapy in first-line epithelial ovarian, fallopian tube, or primary peritoneal carcinoma treatment (ICON8): primary progression free survival analysis results from a GCIG phase 3 randomised controlled trial. Lancet. 2019;394(10214):2084–95.
Google Scholar
Rižner TL, Thalhammer T, Özvegy-Laczka C. The importance of steroid uptake and intracrine action in endometrial and ovarian cancers. Front Pharmacol. 2017;8:346.
Google Scholar
Rehmani H, Li Y, Li T, Padia R, Calbay O, Jin L, et al. Addiction to protein kinase Cɩ due to PRKCI gene amplification can be exploited for an aptamer-based targeted therapy in ovarian cancer. Signal Transduct Target Ther. 2020;5(1):140.
Google Scholar
Gao L, Li X, Nie X, Guo Q, Liu Q, Qi Y, et al. Construction of novel mRNA-miRNA-lncRNA regulatory networks associated with prognosis of ovarian cancer. J Cancer. 2020;11(23):7057–72.
Google Scholar
Gomes AP, Ilter D, Low V, Endress JE, Fernández-García J, Rosenzweig A, et al. Age-induced accumulation of methylmalonic acid promotes tumour progression. Nature. 2020;585(7824):283–7.
Google Scholar
Gomes AP, Ilter D, Low V, Drapela S, Schild T, Mullarky E, et al. Altered propionate metabolism contributes to tumour progression and aggressiveness. Nat Metab. 2022;4(4):435–43.
Google Scholar
Wang Y, Wang H, Yu X, Wu Q, Lv X, Zhou X, et al. Identification of metabolism related biomarkers in obesity based on adipose bioinformatics and machine learning. J Transl Med. 2024;22(1):986.
Google Scholar
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. Clusterprofiler 4.0: a universal enrichment tool for interpreting omics data. Innov (Camb). 2021;2(3):100141.
Google Scholar
Lee J, Lee DK. Survival analysis: part II – applied clinical data analysis. Korean J Anesthesiol. 2019;72(5):441–57.
Google Scholar
Wissel D, Janakarajan N, Schulte J, Rowson D, Yuan X, Boeva V. Sparsesurv: a Python package for fitting sparse survival models via knowledge distillation. Bioinformatics. 2024. https://doi.org/10.1093/bioinformatics/btae521.
Google Scholar
Ma L, Meng Y, An Y, Han P, Zhang C, Yue Y, et al. Single-cell RNA-seq reveals novel interaction between muscle satellite cells and fibro-adipogenic progenitors mediated with FGF7 signalling. J Cachexia Sarcopenia Muscle. 2024;15(4):1388–403.
Google Scholar
Barriga V, Kuol N, Nurgali K, Apostolopoulos V. The complex interaction between the tumor micro-environment and immune checkpoints in breast cancer. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11081205.
Google Scholar
Lu X, Jiang L, Zhang L, Zhu Y, Hu W, Wang J, et al. Immune signature-based subtypes of cervical squamous cell carcinoma tightly associated with human papillomavirus type 16 expression, molecular features, and clinical outcome. Neoplasia. 2019;21(6):591–601.
Google Scholar
Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 2008;9(Suppl 1):S4.
Cheng M, Li M, Zhang Y, Gu X, Gao W, Zhang S, et al. Exploring the mechanism of PPCPs on human metabolic diseases based on network toxicology and molecular docking. Environ Int. 2025;196:109324.
Google Scholar
Anguita R, Ferro Desideri L, Schwember P, Shah N, Ahmed S, Raharja A, et al. Early versus delayed vitrectomy for vitreous hemorrhage secondary to proliferative diabetic retinopathy. Am J Ophthalmol. 2025;270:237–44.
Google Scholar
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.
Google Scholar
Therneau TM, PM Grambsch. Modeling Survival Data: Extending the Cox Model. 2013.
Tao L, Zhou Y, Wu L, Liu J. Comprehensive analysis of sialylation-related genes and construct the prognostic model in sepsis. Sci Rep. 2024;14(1):18110.
Google Scholar
Ahn JH, Kim M, Kim RW. Effects of aromatherapy on nausea and vomiting in patients with cancer: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Clin Pract. 2024;55:101838.
Google Scholar
Zhao Y, He M, Cui L, Gao M, Zhang M, Yue F, et al. Chemotherapy exacerbates ovarian cancer cell migration and cancer stem cell-like characteristics through GLI1. Br J Cancer. 2020;122(11):1638–48.
Google Scholar
Hosseini E, Grootaert C, Verstraete W, Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev. 2011;69(5):245–58.
Google Scholar
de Carvalho C, Caramujo MJ. The Various Roles of Fatty Acids. Molecules. 2018;23(10):2583.
Schiffer L, Barnard L, Baranowski ES, Gilligan LC, Taylor AE, Arlt W, et al. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: a comprehensive review. J Steroid Biochem Mol Biol. 2019;194:105439.
Google Scholar
Ruan X, Li P, Chen Y, Shi Y, Pirooznia M, Seifuddin F, et al. In vivo functional analysis of non-conserved human lncRNAs associated with cardiometabolic traits. Nat Commun. 2020;11(1):45.
Google Scholar
Hilvo M, de Santiago I, Gopalacharyulu P, Schmitt WD, Budczies J, Kuhberg M, et al. Accumulated metabolites of hydroxybutyric acid serve as diagnostic and prognostic biomarkers of ovarian high-grade serous carcinomas. Cancer Res. 2016;76(4):796–804.
Google Scholar
Tian X, Han Y, Yu L, Luo B, Hu Z, Li X, et al. Decreased expression of ALDH5A1 predicts prognosis in patients with ovarian cancer. Cancer Biol Ther. 2017;18(4):245–51.
Google Scholar
Cupido AJ, Reeskamp LF, Hingorani AD, Finan C, Asselbergs FW, Hovingh GK, et al. Joint genetic inhibition of PCSK9 and CETP and the association with coronary artery disease: a factorial Mendelian randomization study. JAMA Cardiol. 2022;7(9):955–64.
Google Scholar
Gao W, Yao Y, Gao Q, Zhao T, Li H. Impact of serum lipids on prognosis in breast cancer patients: a systematic review and meta-analysis. World J Surg Oncol. 2025;23(1):234.
Google Scholar
Tilley SK, Kim WY, Fry RC. Analysis of bladder cancer tumor CpG methylation and gene expression within the Cancer Genome Atlas identifies GRIA1 as a prognostic biomarker for basal-like bladder cancer. Am J Cancer Res. 2017;7(9):1850–62.
Google Scholar
Yang G, Zhang Y, Yang J. A five-microRNA signature as prognostic biomarker in colorectal cancer by bioinformatics analysis. Front Oncol. 2019;9:1207.
Google Scholar
Song D, Zhao L, Zhao G, Hao Q, Wu J, Ren H, et al. Identification and validation of eight lysosomes-related genes signatures and correlation with immune cell infiltration in lung adenocarcinoma. Cancer Cell Int. 2023;23(1):322.
Google Scholar
Tamm R, Mägi R, Tremmel R, Winter S, Mihailov E, Smid A, et al. Polymorphic variation in TPMT is the principal determinant of TPMT phenotype: a meta-analysis of three genome-wide association studies. Clin Pharmacol Ther. 2017;101(5):684–95.
Google Scholar
Wilke RA, Lin DW, Roden DM, Watkins PB, Flockhart D, Zineh I, et al. Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov. 2007;6(11):904–16.
Google Scholar
Lorenzoni PJ, Kay CSK, Zanlorenzi MF, Ducci RD, Werneck LC, Scola RH. Myasthenia gravis and azathioprine treatment: adverse events related to thiopurine S-methyl-transferase (TPMT) polymorphisms. J Neurol Sci. 2020;412:116734.
Google Scholar
Jia W, He YF, Qian XJ, Chen J. TPMT mRNA expression: a novel prognostic biomarker for patients with colon cancer by bioinformatics analysis. Int J Gen Med. 2022;15:151–60.
Google Scholar
Kim I, Choi YS, Song JH, Choi EA, Park S, Lee EJ, et al. A drug-repositioning screen for primary pancreatic ductal adenocarcinoma cells identifies 6-thioguanine as an effective therapeutic agent for TPMT-low cancer cells. Mol Oncol. 2018;12(9):1526–39.
Google Scholar
Zhang L, Sun W, Ren W, Zhang J, Xu G. Predicting panel of metabolism and immune-related genes for the prognosis of human ovarian cancer. Front Cell Dev Biol. 2021;9:690542.
Google Scholar
Coelho RM, Lemos JM, Alho I, Valério D, Ferreira AR, Costa L, et al. Dynamic modeling of bone metastasis, microenvironment and therapy: integrating parathyroid hormone (PTH) effect, anti-resorptive and anti-cancer therapy. J Theor Biol. 2016;391:1–12.
Google Scholar
Kubal M, Lech M, Lajeunesse-Trempe F, Drakou EE, Grossman AB, Dimitriadis GK. Advances in the management of parathyroid carcinoma. Mol Cell Endocrinol. 2024;592:112329.
Google Scholar
Kane JF, Johnson RW. Re-evaluating the role of PTHrP in breast cancer. Cancers (Basel). 2023. https://doi.org/10.3390/cancers15102670.
Google Scholar
Abudourousuli A, Chen S, Hu Y, Qian W, Liao X, Xu Y, et al. NKX2-8/PTHrP axis-mediated osteoclastogenesis and bone metastasis in breast cancer. Front Oncol. 2022;12:907000.
Google Scholar
Wang C, Cao M, Jiang X, Yao Y, Liu Z, Luo D. Macrophage balance fraction determines the degree of immunosuppression and metastatic ability of breast cancer. Int Immunopharmacol. 2021;97:107682.
Google Scholar
An Y, Yang Q. Tumor-associated macrophage-targeted therapeutics in ovarian cancer. Int J Cancer. 2021;149(1):21–30.
Google Scholar
Asem M, Young AM, Oyama C, Claure De La Zerda A, Liu Y, Yang J, et al. Host Wnt5a Potentiates Microenvironmental Regulation of Ovarian Cancer Metastasis. Cancer Res. 2020;80(5):1156–70.
Xu C, Chen J, Tan M, Tan Q. The role of macrophage polarization in ovarian cancer: from molecular mechanism to therapeutic potentials. Front Immunol. 2025;16:1543096.
Google Scholar
Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, et al. The next decade of immune checkpoint therapy. Cancer Discov. 2021;11(4):838–57.
Google Scholar
Yang B, Li X, Zhang W, Fan J, Zhou Y, Li W, et al. Spatial heterogeneity of infiltrating T cells in high-grade serous ovarian cancer revealed by multi-omics analysis. Cell Rep Med. 2022;3(12):100856.
Google Scholar
Hudry D, Le Guellec S, Meignan S, Bécourt S, Pasquesoone C, El Hajj H, et al. Tumor-infiltrating lymphocytes (TILs) in epithelial ovarian cancer: heterogeneity, prognostic impact, and relationship with immune checkpoints. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14215332.
Google Scholar
van der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20(4):218–32.
Google Scholar
Chen M, Zhao Z, Wu L, Huang J, Yu P, Qian J, et al. E2F1/CKS2/PTEN signaling axis regulates malignant phenotypes in pediatric retinoblastoma. Cell Death Dis. 2022;13(9):784.
Google Scholar
Wang X, Fan W, Li N, Ma Y, Yao M, Wang G, et al. Yy1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol. 2023;24(1):87.
Google Scholar
Yang H, Zhang X, Zhu L, Yang Y, Yin X. YY1-induced lncRNA PART1 enhanced resistance of ovarian cancer cells to Cisplatin by regulating miR-512-3p/CHRAC1 axis. DNA Cell Biol. 2021;40(6):821–32.
Google Scholar
Wang M, Yang X, Meng Y, Jin Z, Cao J, Xiong L, et al. Comprehensive analysis of the tumor-promoting effect and immune infiltration correlation MAZ from pan-cancer to hepatocellular carcinoma. Int Immunopharmacol. 2023;115:109660.
Google Scholar
Gungabeesoon J, Gort-Freitas NA, Kiss M, Bolli E, Messemaker M, Siwicki M, et al. A neutrophil response linked to tumor control in immunotherapy. Cell. 2023;186(7):1448–64.e20.
Gao K, Shi Q, Gu Y, Yang W, He Y, Lv Z, et al. SPOP mutations promote tumor immune escape in endometrial cancer via the IRF1-PD-L1 axis. Cell Death Differ. 2023;30(2):475–87.
Google Scholar