A closed-loop method for precise genome size estimation using HiFi reads | BMC Genomics

  • Blommaert J. Genome size evolution: towards new model systems for old questions. Proc Biol Sci. 2020;287(1933): 20201441.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Elliott TA, Gregory TR. What’s in a genome? The c-value enigma and the evolution of eukaryotic genome content. Philos Trans R Soc Lond B Biol Sci. 2015;370(1678): 20140331.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lefebure T, Morvan C, Malard F, Francois C, Konecny-Dupre L, Gueguen L, Weiss-Gayet M, Seguin-Orlando A, Ermini L, Sarkissian C, et al. Less effective selection leads to larger genomes. Genome Res. 2017;27(6):1016–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gregory TR. Synergy between sequence and size in large-scale genomics. Nat Rev Genet. 2005;6(9):699–708.

    Article 
    PubMed 

    Google Scholar 

  • Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. Genome size diversity and its impact on the evolution of land plants. Genes. 2018;9(2):88. https://doi.org/10.3390/genes9020088

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hidalgo O, Pellicer J, Christenhusz M, Schneider H, Leitch AR, Leitch IJ. Is there an upper limit to genome size? Trends Plant Sci. 2017;22(7):567–73.

    Article 
    PubMed 

    Google Scholar 

  • Yin D, Schwarz EM, Thomas CG, Felde RL, Korf IF, Cutter AD, Schartner CM, Ralston EJ, Meyer BJ, Haag ES. Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins. Science. 2018;359(6371):55–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams PE, Eggers VK, Millwood JD, Sutton JM, Pienaar J, Fierst JL. Genome size changes by duplication, divergence, and insertion in caenorhabditis worms. Mol Biol Evol. 2023;40(3):msad039. https://doi.org/10.1093/molbev/msad039

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vitales D, Álvarez I, Garcia S, Hidalgo O, Nieto Feliner G, Pellicer J, Vallès J, Garnatje T. Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in anacyclus (Asteraceae). Ann Bot. 2019;125(4):611–23.

    Article 
    PubMed Central 

    Google Scholar 

  • Agudo AB, Torices R, Loureiro J, Castro S, Castro M, Alvarez I. Genome size variation in a hybridizing diploid species complex in (Asteraceae: Anthemideae). Int J Plant Sci. 2019;180(5):374–85.

    Article 

    Google Scholar 

  • Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, Chougule K, Gao D, Iwata A, Goicoechea JL, et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat Genet. 2018;50(2):285–96.

    Article 
    PubMed 

    Google Scholar 

  • Bozan I, Achakkagari SR, Anglin NL, Ellis D, Tai HH, Stromvik MV. Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Proc Natl Acad Sci U S A. 2023;120(31): e2211117120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kress WJ, Soltis DE, Kersey PJ, Wegrzyn JL, Leebens-Mack JH, Gostel MR, Liu X, Soltis PS. Green plant genomes: what we know in an era of rapidly expanding opportunities. Proc Natl Acad Sci U S A. 2022;119(4): e2115640118. https://doi.org/10.1073/pnas.2115640118

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He W, Li X, Qian Q, Shang L. The developments and prospects of plant super pangenomes: demands, approaches and applications. Plant Commun 2024;6(2):101230.

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD. Eukaryotic genome size databases. Nucleic Acids Res. 2007;35(Database issue):D332-338.

    Article 
    PubMed 

    Google Scholar 

  • Pflug JM, Holmes VR, Burrus C, Johnston JS, Maddison DR. Measuring genome sizes using read-depth, k-mers, and flow cytometry: methodological comparisons in beetles (Coleoptera). G3: Genes|Genomes|Genetics. 2020;10(9):3047–60.

    Article 
    PubMed Central 

    Google Scholar 

  • Pfenninger M, Schonnenbeck P, Schell T. ModEst: accurate estimation of genome size from next generation sequencing data. Mol Ecol Resour. 2022;22(4):1454–64.

    Article 
    PubMed 

    Google Scholar 

  • Guenzi-Tiberi P, Istace B, Alsos IG, Coissac E, Lavergne S, Aury JM, Denoeud F. LocoGSE, a sequence-based genome size estimator for plants. Front Plant Sci. 2024;15: 1328966.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Natarajan S, Gehrke J, Pucker B. Mapping-based genome size estimation. BMC Genomics. 2025;26(1): 482.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moeckel C, Mareboina M, Konnaris MA, Chan CSY, Mouratidis I, Montgomery A, Chantzi N, Pavlopoulos GA, Georgakopoulos-Soares I. A survey of k-mer methods and applications in bioinformatics. Comput Struct Biotechnol J. 2024;23:2289–303.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hesse U. K-mer-based genome size estimation in theory and practice. Methods Mol Biol. 2023;2672:79–113.

    Article 
    PubMed 

    Google Scholar 

  • Hao F, Liu X, Zhou BT, Tian ZZ, Zhou LN, Zong H, Qi JY, He J, Zhang YT, Zeng P, et al. Chromosome-level genomes of three key allium crops and their trait evolution. Nat Genet. 2023;55:1976-1986. https://doi.org/10.1038/s41588-023-01546-0

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A, Kolesnikov A, Olson ND, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37(10):1155–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and smudgeplot for reference-free profiling of polyploid genomes. Nat Commun. 2020;11:1432. https://doi.org/10.1038/s41467-020-14998-3

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scarano C, Veneruso I, De Simone RR, Di Bonito G, Secondino A, D’Argenio V. The third-generation sequencing challenge: novel insights for the omic sciences. Biomolecules. 2024;14(5): 568. https://doi.org/10.3390/biom14050568

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Espinosa E, Bautista R, Larrosa R, Plata O. Advancements in long-read genome sequencing technologies and algorithms. Genomics. 2024;116(3): 110842.

    Article 
    PubMed 

    Google Scholar 

  • Zhao Z, Ng YK, Fang X, Li S. Eliminating heterozygosity from reads through coverage normalization. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2016:174–177. https://doi.org/10.1109/BIBM.2016.7822514

  • Sun J, Zhang YF, Wang MH, Guan Q, Yang XJ, Ou JX, Yan MC, Wang CR, Zhang Y, Li ZH, et al. The biological significance of multi-copy regions and their impact on variant discovery. Genomics Proteomics Bioinformatics. 2020;18(5):516–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Makino T, McLysaght A. Ohnologs in the human genome are dosage balanced and frequently associated with disease. Proc Natl Acad Sci U S A. 2010;107(20):9270–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 2007;17(9):1254–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3(10): e314.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McLysaght A, Hokamp K, Wolfe KH. Extensive genomic duplication during early chordate evolution. Nat Genet. 2002;31(2):200–4.

    Article 
    PubMed 

    Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature. 2003;422(6930):433–8.

    Article 
    PubMed 

    Google Scholar 

  • Qiao X, Zhang SL, Paterson AH. Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions. Comput Struct Biotechnol J. 2022;20:3248–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li FW, Nishiyama T, Waller M, Frangedakis E, Keller J, Li Z, Fernandez-Pozo N, Barker MS, Bennett T, Blazquez MA, et al. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat Plants. 2020;6(3):259–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemieux C, Turmel M, Otis C, Pombert JF. A streamlined and predominantly diploid genome in the tiny marine green Alga. Nat Commun. 2019;10(1):4061. https://doi.org/10.1038/s41467-019-12014-x

  • Sun P, Jiao B, Yang Y, Shan L, Li T, Li X, Xi Z, Wang X, Liu J. WGDI: a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Mol Plant. 2022;15(12):1841–51.

    Article 
    PubMed 

    Google Scholar 

  • Rabier CE, Ta T, Ane C. Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach. Mol Biol Evol. 2014;31(3):750–62.

    Article 
    PubMed 

    Google Scholar 

  • Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature. 2004;428(6983):617–24.

    Article 
    PubMed 

    Google Scholar 

  • Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari A, Munson KM, Lewis AP, et al. Segmental duplications and their variation in a complete human genome. Science. 2022;376(6588):55–.

    Article 

    Google Scholar 

  • Cheng H, Jarvis ED, Fedrigo O, Koepfli KP, Urban L, Gemmell NJ, Li H. Haplotype-resolved assembly of diploid genomes without parental data. Nat Biotechnol. 2022;40(9):1332–5.

    Article 
    PubMed 

    Google Scholar 

  • Cheng H, Asri M, Lucas J, Koren S, Li H. Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. Nat Methods. 2024;21(6):967–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chor B, Horn D, Goldman N, Levy Y, Massingham T. Genomic DNA k-mer spectra: models and modalities. Genome Biol. 2009;10(10):R108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng L, Wang N, Bao Z, Zhou Q, Guarracino A, Yang Y, Wang P, Zhang Z, Tang D, Zhang P, et al. Leveraging a phased pangenome for haplotype design of hybrid potato. Nature. 2025;640:408-417. https://doi.org/10.1038/s41586-024-08476-9

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP, Vaillancourt B, Wiegert-Rininger K, Wood JC, Douches DS, Farre EM, et al. Genome diversity of tuber-bearing solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc Natl Acad Sci U S A. 2017;114(46):E9999-10008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Gershman A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44-53. https://doi.org/10.1126/science.abj6987

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang B, Yang X, Jia Y, Xu Y, Jia P, Dang N, Wang S, Xu T, Zhao X, Gao S, et al. High-quality Arabidopsis thaliana genome assembly with nanopore and HiFi long reads. Genomics Proteomics Bioinformatics. 2022;20(1):4–13.

    Article 
    PubMed 

    Google Scholar 

  • Shang LG, He WC, Wang TY, Yang YX, Xu Q, Zhao XJ, Yang LB, Zhang H, Li XX, Lv Y, et al. A complete assembly of the rice Nipponbare reference genome. Mol Plant. 2023;16(8):1232–6.

    Article 
    PubMed 

    Google Scholar 

  • Xu S, Chen R, Zhang X, Wu Y, Yang L, Sun Z, Zhu Z, Song A, Wu Z, Li T, et al. The evolutionary tale of lilies: giant genomes derived from transposon insertions and polyploidization. Innovation (Camb). 2024;5(6): 100726.

    PubMed 

    Google Scholar 

  • Healey AL, Garsmeur O, Lovell JT, Shengquiang S, Sreedasyam A, Jenkins J, Plott CB, Piperidis N, Pompidor N, Llaca V, et al. The complex polyploid genome architecture of sugarcane. Nature. 2024;628(8009):804–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schartl M, Woltering JM, Irisarri I, Du K, Kneitz S, Pippel M, Brown T, Franchini P, Li J, Li M, et al. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature. 2024;624(8032):96-103. https://doi.org/10.1038/s41586-024-07830-1

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shao C, Sun S, Liu K, Wang J, Li S, Liu Q, Deagle BE, Seim I, Biscontin A, Wang Q, et al. The enormous repetitive Antarctic Krill genome reveals environmental adaptations and population insights. Cell. 2023;186(6):1279–94. e1219. https://doi.org/10.1016/j.cell.2023.02.005

  • Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, Kang L, Zhou P, Yu K, Dong X, et al. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet. 2022;54(8):1248–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen W, Yan M, Chen S, Sun J, Wang J, Meng D, Li J, Zhang L, Guo L. The complete genome assembly of Nicotiana benthamiana reveals the genetic and epigenetic landscape of centromeres. Nat Plants. 2024;10(12):1928–43.

    Article 
    PubMed 

    Google Scholar 

  • Zhang J, Qi Y, Hua X, Wang Y, Wang B, Qi Y, Huang Y, Yu Z, Gao R, Zhang Y, et al. The highly allo-autopolyploid modern sugarcane genome and very recent allopolyploidization in saccharum. Nat Genet. 2025;57:242-253. https://doi.org/10.1038/s41588-024-02033-w

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang HR, Liu X, Arshad R, Wang X, Li WM, Zhou Y, Ge XJ. Telomere-to-telomere haplotype-resolved reference genome reveals subgenome divergence and disease resistance in triploid Cavendish banana. Hortic Res. 2023;10(9): uhad153.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bao Z, Li C, Li G, Wang P, Peng Z, Cheng L, Li H, Zhang Z, Li Y, Huang W, et al. Genome architecture and tetrasomic inheritance of autotetraploid potato. Mol Plant. 2022;15(7):1211–26.

    Article 
    PubMed 

    Google Scholar 

  • Fernandez P, Amice R, Bruy D, Christenhusz MJM, Leitch IJ, Leitch AL, Pokorny L, Hidalgo O, Pellicer J. A 160 Gbp fork fern genome shatters size record for eukaryotes. iScience. 2024;27(6): 109889.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyers LA, Levin DA. On the abundance of polyploids in flowering plants. Evolution. 2006;60(6):1198–206.

    PubMed 

    Google Scholar 

  • Reis AC, Franco AL, Campos VR, Souza FR, Zorzatto C, Viccini LF, Sousa SM. rDNA mapping, heterochromatin characterization and AT/GC content of Agapanthus africanus (L.) Hoffmanns (Agapanthaceae). An Acad Bras Cienc. 2016;88(3 Suppl):1727–34.

    Article 
    PubMed 

    Google Scholar 

  • Ohri D, Fritsch RM, Hanelt P. Evolution of genome size in allium (Alliaceae). Plant Syst Evol. 1998;210(1):57–86.

    Article 

    Google Scholar 

  • Ricroch A, Yockteng R, Brown SC, Nadot S. Evolution of genome size across some cultivated allium species. Genome. 2005;48(3):511–20.

    Article 
    PubMed 

    Google Scholar 

  • Greilhuber J, Dolezel J, Lysak MA, Bennett MD. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot. 2005;95(1):255–260. https://doi.org/10.1093/aob/mci019

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koren S, Rhie A, Walenz BP, Dilthey AT, Bickhart DM, Kingan SB, Hiendleder S, Williams JL, Smith TPL, Phillippy AM. De novo assembly of haplotype-resolved genomes with trio binning. Nat Biotechnol. 2018;36:1174-1182. https://doi.org/10.1038/nbt.4277

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18(2):170–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia KH, Wang ZX, Wang LX, Li GY, Zhang W, Wang XL, Xu FJ, Jiao SQ, Zhou SS, Liu H, et al. Subphaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers. New Phytol. 2022;235(2):801–9.

    Article 
    PubMed 

    Google Scholar 

  • Wendel JF. Genome evolution in polyploids. Plant Mol Biol. 2000;42(1):225–49.

    Article 
    PubMed 

    Google Scholar 

  • Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34(1):401–37.

    Article 
    PubMed 

    Google Scholar 

  • Soltis PS, Soltis DE. The role of hybridization in plant speciation. Annu Rev Plant Biol. 2009;60:561–88.

    Article 
    PubMed 

    Google Scholar 

  • del Pozo JC, Ramirez-Parra E. Whole genome duplications in plants: an overview from Arabidopsis. J Exp Bot. 2015;66(22):6991–7003.

    Article 
    PubMed 

    Google Scholar 

  • Eckardt NA. Two genomes are better than one: widespread paleopolyploidy in plants and evolutionary effects. Plant Cell. 2004;16(7):1647– 1649. https://doi.org/10.1105/tpc.160710

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li H, Durbin R. Genome assembly in the telomere-to-telomere era. Nat Rev Genet. 2024;25(9):658-670. https://doi.org/10.1038/s41576-024-00718-w

    Article 
    PubMed 

    Google Scholar 

  • Alser M, Rotman J, Deshpande D, Taraszka K, Shi H, Baykal PI, Yang HT, Xue V, Knyazev S, Singer BD, et al. Technology dictates algorithms: recent developments in read alignment. Genome Biol. 2021. https://doi.org/10.1186/s13059-021-02443-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bates S, Dessimoz C, Nevers Y. OMAnnotator: a novel approach to Building an annotated consensus genome sequence. BioRxiv. 2024;626846.

    Google Scholar 

  • Zeng XF, Yi ZL, Zhang XT, Du YH, Li Y, Zhou ZQ, Chen SJ, Zhao HJ, Yang S, Wang YB, et al. Chromosome-level scaffolding of haplotype-resolved assemblies using Hi-C data without reference genomes. Nat Plants. 2024;10: 1184-1200. https://doi.org/10.1038/s41477-024-01755-3

    Article 
    PubMed 

    Google Scholar 

  • Liu G, Chen L, Wu Y, Han Y, Bao Y, Zhang T. PDLLMs: A group of tailored DNA large Language models for analyzing plant genomes. Mol Plant. 2024;18(2):175-178 . https://doi.org/10.1016/j.molp.2024.12.006

  • Behera S, Catreux S, Rossi M, Truong S, Huang ZY, Ruehle M, Visvanath A, Parnaby G, Roddey C, Onuchic V, et al. Comprehensive genome analysis and variant detection at scale using DRAGEN. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02382-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen Y, Huang JH, Sun Y, Zhang Y, Li Y, Xu X. Haplotype-resolved assembly of diploid and polyploid genomes using quantum computing. Cell Rep Methods. 2024;4(5): 100754.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, Grothe R, Miga KH, Eichler EE, Phillippy AM, Koren S. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 2020;30(9):1291–305.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nie F, Ni P, Huang N, Zhang J, Wang Z, Xiao C, Luo F, Wang J. De novo diploid genome assembly using long noisy reads. Nat Commun. 2024;15(1):2964. https://doi.org/10.1038/s41467-024-47349-7

  • Song L, Florea L, Langmead B. Lighter: fast and memory-efficient sequencing error correction without counting. Genome Biol. 2014;15:509. https://doi.org/10.1186/s13059-014-0509-9

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kokot M, Dlugosz M, Deorowicz S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics. 2017;33(17):2759–2761. https://doi.org/10.1093/bioinformatics/btx304

    Article 
    PubMed 

    Google Scholar 

  • Martayan I, Robidou L, Shibuya Y, Limasset A. Hyper-k-mers: efficient streaming k-mers representation. bioRxiv. 2024:2024.2011.2006.620789 . https://doi.org/10.1101/2024.11.06.620789

  • Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2014;30(1):31–7.

    Article 
    PubMed 

    Google Scholar 

  • Sun H, Ding J, Piednoel M, Schneeberger K. FindGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics. 2018;34(4):550–7.

    Article 
    PubMed 

    Google Scholar 

  • Sarmashghi S, Balaban M, Rachtman E, Touri B, Mirarab S, Bafna V. Estimating repeat spectra and genome length from low-coverage genome skims with RESPECT. PLoS Comput Biol. 2021;17(11): e1009449.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884-90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Said SE, Dickey DA. Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika. 1984;71(3):599–607. https://doi.org/10.1093/biomet/71.3.599

  • Banerjee A, Dolado JJ, Galbraith JW, Hendry D. Co-integration, error correction, and the econometric analysis of Non-Stationary data. Oxford University Press; 1993.

  • Trapletti A, Hornik K. Tseries: time series analysis and computational finance: R package version 0.10–58: https://CRAN.R-project.org/package=tseries; 2024.

  • Tang H, Krishnakumar V, Zeng X, Xu Z, Taranto A, Lomas JS, Zhang Y, Huang Y, Wang Y, Yim WC, et al. JCVI: a versatile toolkit for comparative genomics analysis. Imeta. 2024;3(4): e211.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21(3):487–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading